A new filtration of the Magnus kernel

dc.contributor.advisorHarvey, Shellyen_US
dc.contributor.committeeMemberCochran, Tim D.en_US
dc.contributor.committeeMemberRiviere, Beatrice M.en_US
dc.creatorMcNeill, Reaginen_US
dc.date.accessioned2013-09-16T15:58:08Zen_US
dc.date.accessioned2013-09-16T15:58:10Zen_US
dc.date.available2013-09-16T15:58:08Zen_US
dc.date.available2013-09-16T15:58:10Zen_US
dc.date.created2013-05en_US
dc.date.issued2013-09-16en_US
dc.date.submittedMay 2013en_US
dc.date.updated2013-09-16T15:58:10Zen_US
dc.description.abstractFor a oriented genus g surface with one boundary component, S_g, the Torelli group is the group of orientation preserving homeomorphisms of S_g that induce the identity on homology. The Magnus representation of the Torelli group represents the action on F/F'' where F=π_1(S_g) and F'' is the second term of the derived series. I show that the kernel of the Magnus representation, Mag(S_g), is highly non-trivial and has a rich structure as a group. Specifically, I define an infinite filtration of Mag(S_g) by subgroups, called the higher order Magnus subgroups, M_k(S_g). I develop methods for generating nontrivial mapping classes in M_k(S_g) for all k and g≥2. I show that for each k the quotient M_k(S_g)/M_{k+1}(S_g) contains a subgroup isomorphic to a lower central series quotient of free groups E(g-1)_k/E(g-1)_{k+1}. Finally I show that for g≥3 the quotient M_k(S_g)/M_{k+1}(S_g) surjects onto an infinite rank torsion free abelian group. To do this, I define a Johnson-type homomorphism on each higher order Magnus subgroup quotient and show it has a highly non-trivial image.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMcNeill, Reagin. "A new filtration of the Magnus kernel." (2013) Diss., Rice University. <a href="https://hdl.handle.net/1911/72006">https://hdl.handle.net/1911/72006</a>.en_US
dc.identifier.slug123456789/ETD-2013-05-458en_US
dc.identifier.urihttps://hdl.handle.net/1911/72006en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectLower central seriesen_US
dc.subjectSurfacesen_US
dc.subjectMapping class groupsen_US
dc.subjectPure braidsen_US
dc.subjectMagnus kernelen_US
dc.subjectFree groupsen_US
dc.subjectJohnson subgroupsen_US
dc.titleA new filtration of the Magnus kernelen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentMathematicsen_US
thesis.degree.disciplineNatural Sciencesen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MCNEILL-THESIS.pdf
Size:
837.02 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed upon to submission
Description: