Multiscale Wedgelet Image Analysis: Fast Decompositions and Modeling

dc.citation.bibtexNameinproceedingsen_US
dc.citation.conferenceNameIEEE International Conference on Image Processingen_US
dc.citation.firstpage585en_US
dc.citation.lastpage588en_US
dc.citation.locationRochester, NYen_US
dc.citation.volumeNumber3en_US
dc.contributor.authorRomberg, Justinen_US
dc.contributor.authorWakin, Michaelen_US
dc.contributor.authorBaraniuk, Richard G.en_US
dc.contributor.orgDigital Signal Processing (http://dsp.rice.edu/)en_US
dc.date.accessioned2007-10-31T01:02:50Zen_US
dc.date.available2007-10-31T01:02:50Zen_US
dc.date.issued2002-06-01en_US
dc.date.modified2006-06-21en_US
dc.date.note2002-05-21en_US
dc.date.submitted2002-06-01en_US
dc.descriptionConference Paperen_US
dc.description.abstractThe most perceptually important features in images are geometrical, the most prevalent being the smooth contours ("edges") that separate different homogeneous regions and delineate distinct objects. Although wavelet based algorithms have enjoyed success in many areas of image processing, they have significant short-comings in their treatment of edges. Wavelets do not parsimoniously capture even the simplest geometrical structure in images, and as a result wavelet based processing algorithms often produce images with ringing around the edges. The multiscale wedgelet framework is a first step towards explicitly capturing geometrical structure in images. The framework has two components: decomposition and representation. The multiscale wavelet decomposition divides the image into dyadic blocks at different scales and projects these image blocks onto wedgelets - simple piecewise constant functions with linear discontinuities. The multiscale wedgelet representation is an approximation of the image built out of wedgelets from the decomposition. In choosing the wedgelets to form the representation, we can weigh several factors: the error between the representation and the original image, the parsimony of the representation, and whether the wedgelets in the representation form "natural" geometrical structure. In this paper, we show that an efficient multiscale wedgelet decomposition is possible if we carefully choose the set of possible wedgelet orientations. We also present a modeling framework that makes it possible to incorporate simple geometrical constraints into the choice of wedgelet representation, resulting in parsimonious image approximations with smooth contours.en_US
dc.description.sponsorshipOffice of Naval Researchen_US
dc.description.sponsorshipNational Science Foundationen_US
dc.description.sponsorshipAir Force Office of Scientific Researchen_US
dc.identifier.citationJ. Romberg, M. Wakin and R. G. Baraniuk, "Multiscale Wedgelet Image Analysis: Fast Decompositions and Modeling," vol. 3, 2002.en_US
dc.identifier.doihttp://dx.doi.org/10.1109/ICIP.2002.1039038en_US
dc.identifier.urihttps://hdl.handle.net/1911/20300en_US
dc.language.isoengen_US
dc.subjectmultiscale image analysisen_US
dc.subjectwedgeletsen_US
dc.subjectgeometric edge modelsen_US
dc.subject.keywordmultiscale image analysisen_US
dc.subject.keywordwedgeletsen_US
dc.subject.keywordgeometric edge modelsen_US
dc.subject.otherMultiscale Methodsen_US
dc.titleMultiscale Wedgelet Image Analysis: Fast Decompositions and Modelingen_US
dc.typeConference paperen_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Rom2002Sep5Multiscale.PDF
Size:
366.47 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Rom2002Sep5Multiscale.PS
Size:
206.64 KB
Format:
Postscript Files