An abstract analysis of differential semblance optimization

Date
1994
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Differential Semblance Optimization (DSO) is a novel way of approaching a class of inverse problems arising in exploration seismology. The promising feature of the DSO method is that it replaces a nonsmooth, highly nonconvex cost function (the Output Least-Squares (OLS) objective function) with a smooth cost function that is amenable to standard (local) optimization algorithms. The OLS problem can be written abstractly as a partially linear least-squares problem with linear constraints. The DSO objective function is derived from the associated quadratic penalty function. It is shown that one way to view the DSO objective function is as a regularization of a function that is dual (in a certain sense) to the OLS objective function. By viewing the DSO problem as a perturbation of this dual problem, this method can be shown to be effective. In particular, it is demonstrated that, under suitable assumptions, the DSO method defines a parameterized path of minimizers converging to the desired solution, and that for certain values of the parameter, standard optimization techniques can be used to find a point on the path. The predictions of the theory are motivated and illustrated on two simple model problems for seismic velocity inversion, the plane wave detection problem and the "layer-over-half-space" problem. It is shown that the theory presented in this thesis extends the existing theory for the plane wave detection problem.

Description
Degree
Doctor of Philosophy
Type
Thesis
Keywords
Mathematics
Citation

Gockenbach, Mark Steven. "An abstract analysis of differential semblance optimization." (1994) Diss., Rice University. https://hdl.handle.net/1911/16728.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page