Filling links and minimal surfaces in 3-manifolds

dc.contributor.advisorReid, Alan Wen_US
dc.creatorStagner, Williamen_US
dc.date.accessioned2022-09-26T19:22:01Zen_US
dc.date.available2022-09-26T19:22:01Zen_US
dc.date.created2022-05en_US
dc.date.issued2022-04-22en_US
dc.date.submittedMay 2022en_US
dc.date.updated2022-09-26T19:22:01Zen_US
dc.description.abstractThis thesis studies this existence of filling links 3-manifolds. A link L in a 3-manifold M is filling in M if, for any spine G of M disjoint from L, π_1(G) injects into π_1(M-L). Conceptually, a filling link cuts through all of the topology 3-manifold. These links were first studied by Freedman-Krushkal in the concrete case of the 3-torus M = T^3, but they leave open the question of whether a filling link actually exists in T^3. We answer this question affirmatively by proving in fact that every closed, orientable 3-manifold M with fundamental group of rank 3 contains a filling link.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationStagner, William. "Filling links and minimal surfaces in 3-manifolds." (2022) Diss., Rice University. <a href="https://hdl.handle.net/1911/113390">https://hdl.handle.net/1911/113390</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/113390en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subject3-manifoldsen_US
dc.subjecthyperbolic manifoldsen_US
dc.subjectminimal surfacesen_US
dc.subjectlow-dimensional topologyen_US
dc.titleFilling links and minimal surfaces in 3-manifoldsen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentMathematicsen_US
thesis.degree.disciplineNatural Sciencesen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
STAGNER-DOCUMENT-2022.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
refs.bib
Size:
31.26 KB
Format:
Unknown data format
No Thumbnail Available
Name:
thesis_main copy.tex
Size:
66.68 KB
Format:
Tex/LateX document
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.84 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.61 KB
Format:
Plain Text
Description: