PIE: Perceptual Image Enhancement via Local Manifold Sampling on Pretrained Diffusion Models

dc.contributor.advisorBaraniuk, Richard Gen_US
dc.creatorMayer, Paul Michaelen_US
dc.date.accessioned2024-01-25T15:40:21Zen_US
dc.date.available2024-01-25T15:40:21Zen_US
dc.date.created2023-12en_US
dc.date.issued2023-12-01en_US
dc.date.submittedDecember 2023en_US
dc.date.updated2024-01-25T15:40:21Zen_US
dc.description.abstractPIE: Perceptual Image Enhancement via Local Manifold Sampling on Pretrained Diffusion Modelsen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMayer, Paul Michael. "PIE: Perceptual Image Enhancement via Local Manifold Sampling on Pretrained Diffusion Models." (2023). Master's thesis, Rice University. https://hdl.handle.net/1911/115437en_US
dc.identifier.urihttps://hdl.handle.net/1911/115437en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectImage Modelsen_US
dc.subjectDeep Neural Networksen_US
dc.subjectGenerative Modelsen_US
dc.subjectDiffusion Modelsen_US
dc.subjectDeep Learningen_US
dc.subjectImage Enhancementen_US
dc.subjectDenoisingen_US
dc.titlePIE: Perceptual Image Enhancement via Local Manifold Sampling on Pretrained Diffusion Modelsen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentElectrical and Computer Engineeringen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Scienceen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MAYER-DOCUMENT-2023.pdf
Size:
51.77 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.84 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.98 KB
Format:
Plain Text
Description: