Two-Grid Methods for Mixed Finite Element Approximations of Nonlinear Parabolic Equations

dc.contributor.authorDawson, Clint N.en_US
dc.contributor.authorWheeler, Mary F.en_US
dc.date.accessioned2018-06-18T17:41:49Zen_US
dc.date.available2018-06-18T17:41:49Zen_US
dc.date.issued1994-01en_US
dc.date.noteJanuary 1994en_US
dc.description.abstractMixed finite element approximation of nonlinear parabolic equations is discussed. The equation considered is a prototype of a model which arises in flow through porous media. A two-grid approximation scheme is developed and analyzed for implicit time discretizations. In this approach, the full nonlinear system is solved on a "coarse" grid of size H. The nonlinearities are expanded about the coarse grid solution, and the resulting linear but nonsymmetric system is solved on a "fine" grid of size h. Error estimates are derived which demonstrate that the error is O (h^{k+1} + H^{2(k+1)-d/2} + Delta­t), where k is the degree of the approximating space for the primary variable and d is spatial dimension, with k >= 1 for d >= 2. For the RT0 space (k=0) on rectangular domains, we present a modified scheme for treating the coarse grid problem. Here we show that the error is O (h + H^{3 - d/2} + Delta­t). The above estimates are useful for determining an appropriate H for the coarse grid problem.en_US
dc.format.extent13 ppen_US
dc.identifier.citationDawson, Clint N. and Wheeler, Mary F.. "Two-Grid Methods for Mixed Finite Element Approximations of Nonlinear Parabolic Equations." (1994) <a href="https://hdl.handle.net/1911/101826">https://hdl.handle.net/1911/101826</a>.en_US
dc.identifier.digitalTR94-01en_US
dc.identifier.urihttps://hdl.handle.net/1911/101826en_US
dc.language.isoengen_US
dc.titleTwo-Grid Methods for Mixed Finite Element Approximations of Nonlinear Parabolic Equationsen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR94-01.pdf
Size:
245.55 KB
Format:
Adobe Portable Document Format