Prediction of magnetospheric parameters using artificial neural networks

Date
1994
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Artificial neural network models have been developed that provide the magnetospheric parameters Dst, polar cap potential and the midnight equatorward boundary of diffuse aurora. Layered feedforward neural networks have successfully learned the relationship between the solar wind and the magnetospheric parameters using supervised back-propagation training. All models have achieved a higher prediction accuracy than the existing empirical or statistical models. These models are applied to the prediction of the parameters, which will then be used by the Rice Magnetospheric Specification and Forecast Model (MSFM). The neural network models are able to forecast the magnetospheric parameters 30 to 60 minutes ahead using the information from a solar wind monitor spacecraft. With the forecast values, the MSFM will be able to forecast particle fluxes in the inner magnetosphere. The MSFM is applied to the April 1988 magnetic storm for the forecast capability test. The neural network modeling, the comparison of the prediction accuracy with other methods and the result of the MSFM forecast capability test are presented.

Description
Advisor
Degree
Doctor of Philosophy
Type
Thesis
Keywords
Statistics, Physics, Artificial intelligence, Computer science
Citation

Nagai, Akira. "Prediction of magnetospheric parameters using artificial neural networks." (1994) Diss., Rice University. https://hdl.handle.net/1911/19091.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page