Energy Storage Capacity and Superconductivity of Nanosized Titanium Diboride, and Multifunctionality of Carbon-based Nanostructures: Development of Nano-engineered Solutions

dc.contributor.advisorAjayan, Pulickel
dc.contributor.committeeMemberKono, Junichiro
dc.contributor.committeeMemberBayazitoglu, Yildiz
dc.creatorZhou, Zhou
dc.date.accessioned2019-10-01T12:55:52Z
dc.date.available2019-10-01T12:55:52Z
dc.date.created2019-08
dc.date.issued2019-09-30
dc.date.submittedAugust 2019
dc.date.updated2019-10-01T12:55:52Z
dc.description.abstractNanotechnology has risen into prominence since the discovery of the “buckyball” in 1985,2 due to the enhanced tunability and performance of nanomaterials.3 Keenly awaited, scalable and facile application of nanotechnology, however, remains challenging. In petroleum industry, for instance, implementation barriers in scalability, controllability, and profitability have been hindering the advancement of nanotechnology innovations. The potential of fine tuning material properties and creating novel solutions is yet to be realized. Industrial friendly, scalable synthesis of nanosized titanium diboride and multifunctional nanostructures are exploited in this thesis, to include chemical vapor deposition, liquid exfoliation and electrochemical deposition. State of the art characterization techniques reveal atomic level properties in physical structure and chemical composition. After iterative material development cycles, the performance of prototypes are evaluated experimentally and theoretically. Lithium ion storage capacity and type II superconductivity are first time reported for nanosized titanium diboride. Remarkable theoretical capacity of 385.7 mAh/g and superconductive critical temperature of 5.8 K are attributed to the dimensional confinement of the nanoscale. Titanium diboride nanoparticles exhibit remarkable charge storage capacity, demonstrating great potential for applications as lithium ion battery anode and supercapacitor material. Their high energy storage capacity together with their newly discovered superconductivity manifest the distinctive material characteristics induced by dimensional confinement. Looking beyond the enhancement of material properties offered by the nanoscale, the multifunctionality of nanostructures are explored. Impelled by the virtues of carbon nanotubes and Fe@C core-shell nanoparticles, multifunctional, nano-engineered prototypes are designed and fabricated, combining hydrophobicity, mechanical and chemical resistance, and superparamagnetic, florescent and photocatalytic properties. The multifunctionality of infiltrated carbon nanotubes and Fe@C-CNx nanostructures appeal to various applications such as protective composite and reusable photocatalyst. Bridging the gap between academic research and industrial application, nano-engineering and design thinking approaches in this thesis develop nanostructures to solve explicit problems. Size confinement induced properties and innovative designs of nano-engineered structures are vital to convey the value of nanotechnology. The developed prototypes provide innovative solutions to various existing problems, including low durability of drilling tools, high friction in mechanical operations, critical environment energy storage and hazardous water waste.
dc.format.mimetypeapplication/pdf
dc.identifier.citationZhou, Zhou. "Energy Storage Capacity and Superconductivity of Nanosized Titanium Diboride, and Multifunctionality of Carbon-based Nanostructures: Development of Nano-engineered Solutions." (2019) Diss., Rice University. <a href="https://hdl.handle.net/1911/107424">https://hdl.handle.net/1911/107424</a>.
dc.identifier.urihttps://hdl.handle.net/1911/107424
dc.language.isoeng
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
dc.subjectNanotechnology
dc.subjecttitanium diboride
dc.titleEnergy Storage Capacity and Superconductivity of Nanosized Titanium Diboride, and Multifunctionality of Carbon-based Nanostructures: Development of Nano-engineered Solutions
dc.typeThesis
dc.type.materialText
thesis.degree.departmentApplied Physics
thesis.degree.disciplineNatural Sciences
thesis.degree.grantorRice University
thesis.degree.levelDoctoral
thesis.degree.majorAppl Phys/Materials Sci NanoEn
thesis.degree.nameDoctor of Philosophy
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ZHOU-DOCUMENT-2019.pdf
Size:
26.12 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.84 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.6 KB
Format:
Plain Text
Description: