An approach to modeling a multivariate spatial-temporal process

Date
2000
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Although modeling of spatial-temporal stochastic processes is a growing area of research, one underdeveloped area in this field is the multivariate space-time setting. The motivation for this research originates from air quality studies. By treating each air pollutant as a separate variable, the multivariate approach will enable modeling of not only the behavior of the individual pollutants but also the interaction between pollutants over space and time. Studying both the spatial and the temporal aspects of the process gives a more accurate picture of the behavior of the process. A bivariate state-space model is developed and includes a covariance function which can account for the different cross-covariances across space and time. The Kalman filter is used for parameter estimation and prediction. The model is evaluated through the prediction efforts in an air-quality application.

Description
Degree
Doctor of Philosophy
Type
Thesis
Keywords
Statistics, Environmental science
Citation

Calizzi, Mary Anne. "An approach to modeling a multivariate spatial-temporal process." (2000) Diss., Rice University. https://hdl.handle.net/1911/19474.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page