A coding theoretic approach to image segmentation

dc.contributor.advisorNowak, Robert D.en_US
dc.creatorNdili, Unoma Ifeyinwaen_US
dc.date.accessioned2009-06-04T08:28:07Zen_US
dc.date.available2009-06-04T08:28:07Zen_US
dc.date.issued2001en_US
dc.description.abstractUsing a coding theoretic approach, we achieve unsupervised image segmentation by implementing Rissanen's concept of Minimum Description Length (MDL) for estimating piecewise homogeneous regions in images. MDL offers a mathematical foundation for balancing brevity of descriptions against their fidelity to the data by penalizing overly complex representations. Our image model is a Gaussian random field whose mean and variance functions are piecewise constant. The image pixels are conditionally independent and Gaussian, given the mean and variance functions. Our model is aimed at identifying regions of constant intensity (mean) and texture (variance). We adopt a multi-scale encoding approach to the segmentation problem, and develop two different schemes. One algorithm is based on an adaptive (greedy) rectangular partitioning, while the second algorithm is an optimally-pruned wedgelet-decorated dyadic partitioning scheme. We compare the two algorithms with the more common signal plus constant noise schemes, which account for variations in mean only. We explore applications of our algorithms on Synthetic Aperture Radar (SAR) imagery. Based on our segmentation scheme, we implement a robust Constant False alarm Rate (CFAR) detector towards Automatic Target Recognition (ATR) on Laser Radar (LADAR) and Infra-Red (IR) images.en_US
dc.format.extent63 p.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.callnoTHESIS E.E. 2001 NDILIen_US
dc.identifier.citationNdili, Unoma Ifeyinwa. "A coding theoretic approach to image segmentation." (2001) Master’s Thesis, Rice University. <a href="https://hdl.handle.net/1911/17455">https://hdl.handle.net/1911/17455</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/17455en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectElectronicsen_US
dc.subjectElectrical engineeringen_US
dc.titleA coding theoretic approach to image segmentationen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentElectrical Engineeringen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Scienceen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1405698.PDF
Size:
2.19 MB
Format:
Adobe Portable Document Format