A method of computing the fast Fourier transform

dc.contributor.advisorBurrus, C. Sidneyen_US
dc.creatorRead, Randol Roberten_US
dc.date.accessioned2016-04-22T21:58:15Zen_US
dc.date.available2016-04-22T21:58:15Zen_US
dc.date.issued1968en_US
dc.description.abstractThe fast Fourier transform is investigated. It is proved that the number of real (as opposed to complex) multiplications necessary to implement the algorithm M for complex input sequence of length N = 2 is 2N(M -7/2) + 12. Methods which do not avoid the unnecessary multiplications predict 2N(M-1) or 2NM. It is shown experimentally that for at least one implementation of the algorithm, it is faster to take advantage of the multiplication savings mentioned above. Some theorems regarding computational savings when transforming real data are presented. A system of subroutines for calculating finite discrete Fourier transforms by the fast Fourier transform method is given. The results of applying this system to two specific problems is presented.en_US
dc.format.digitalOriginreformatted digitalen_US
dc.format.extent49 ppen_US
dc.identifier.callnoThesis E.E. 1968 READen_US
dc.identifier.citationRead, Randol Robert. "A method of computing the fast Fourier transform." (1968) Master’s Thesis, Rice University. <a href="https://hdl.handle.net/1911/89715">https://hdl.handle.net/1911/89715</a>.en_US
dc.identifier.digitalRICE0746en_US
dc.identifier.urihttps://hdl.handle.net/1911/89715en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.titleA method of computing the fast Fourier transformen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentElectrical Engineeringen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Scienceen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RICE0746.pdf
Size:
992.14 KB
Format:
Adobe Portable Document Format