Homomorphic images of link quandles

dc.contributor.advisorCochran, Tim D.en_US
dc.creatorWallace, Steven D.en_US
dc.date.accessioned2009-06-04T07:57:55Zen_US
dc.date.available2009-06-04T07:57:55Zen_US
dc.date.issued2004en_US
dc.description.abstractWe study the difference between quandles that arise from conjugation in groups and those which do not. As a result, we define conjugation subquandles, and show that not all quandles or keis are in this class of examples. We investigate coloring by keis which are not conjugation subquandles. And we investigate the relationship between decomposable quandles or keis and link colorings. Subsequently, we analyze what kinds of quandles or keis can be homomorphic images of a knot quandle.en_US
dc.format.extent60 p.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.callnoTHESIS MATH. 2004 WALLACEen_US
dc.identifier.citationWallace, Steven D.. "Homomorphic images of link quandles." (2004) Master’s Thesis, Rice University. <a href="https://hdl.handle.net/1911/17742">https://hdl.handle.net/1911/17742</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/17742en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectMathematicsen_US
dc.titleHomomorphic images of link quandlesen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentMathematicsen_US
thesis.degree.disciplineNatural Sciencesen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Artsen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1419142.PDF
Size:
3.51 MB
Format:
Adobe Portable Document Format