On geometry along grafting rays in Teichmuller space

dc.contributor.advisorWolf, Michaelen_US
dc.contributor.committeeMemberHardt, Robert M.en_US
dc.contributor.committeeMemberGoldman, Ronen_US
dc.creatorLaverdiere, Reneeen_US
dc.date.accessioned2012-09-06T04:24:26Zen_US
dc.date.accessioned2012-09-06T04:24:28Zen_US
dc.date.available2012-09-06T04:24:26Zen_US
dc.date.available2012-09-06T04:24:28Zen_US
dc.date.created2012-05en_US
dc.date.issued2012-09-05en_US
dc.date.submittedMay 2012en_US
dc.date.updated2012-09-06T04:24:28Zen_US
dc.description.abstractIn this work, we investigate the mid-range behavior of geometry along a grafting ray in Teichm\"{u}ller space. The main technique is to describe the hyperbolic metric $$\sigma_{t}$$ at a point along the grafting ray in terms of a conformal factor $$g_{t}$$ times the Thurston (grafted) metric and study solutions to the linearized Liouville equation. We give a formula that describes, at any point on a grafting ray, the change in length of a sum of distinguished curves in terms of the hyperbolic geometry at the point. We then make precise the idea that once the length of the grafting locus is small, local behavior of the geometry for grafting on a general manifold is like that of grafting on a cylinder. Finally, we prove that the sum of lengths of is eventually monotone decreasing along grafting rays.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLaverdiere, Renee. "On geometry along grafting rays in Teichmuller space." (2012) Diss., Rice University. <a href="https://hdl.handle.net/1911/64672">https://hdl.handle.net/1911/64672</a>.en_US
dc.identifier.slug123456789/ETD-2012-05-137en_US
dc.identifier.urihttps://hdl.handle.net/1911/64672en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectTeichmuller theoryen_US
dc.subjectDifferential geometryen_US
dc.titleOn geometry along grafting rays in Teichmuller spaceen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentMathematicsen_US
thesis.degree.disciplineNatural Sciencesen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LAVERDIERE-THESIS.pdf
Size:
928.37 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed upon to submission
Description: