Multiresolution Intensity Estimation of Piecewise Linear Poisson Processes

dc.citation.bibtexNamemiscen_US
dc.citation.journalTitleNoneen_US
dc.contributor.authorWillett, Rebeccaen_US
dc.contributor.orgDigital Signal Processing (http://dsp.rice.edu/)en_US
dc.date.accessioned2007-10-31T01:09:45Zen_US
dc.date.available2007-10-31T01:09:45Zen_US
dc.date.issued2001-04-20en_US
dc.date.modified2002-04-30en_US
dc.date.submitted2002-04-30en_US
dc.descriptionElec 599 Project Reporten_US
dc.description.abstractGiven observations of a one-dimensional piecewise linear, length-M Poisson intensity function, our goal is to estimate both the partition points and the parameters of each segment. In order to determine where the breaks lie, we develop a maximum penalized likelihood estimator based on information-theoretic complexity penalization. We construct a probabilistic model of the observations within a multiscale framework, and use this framework to devise a computationally efficient optimization algorithm, based on a tree-pruning approach, to compute the MPLE.en_US
dc.identifier.citationR. Willett, "Multiresolution Intensity Estimation of Piecewise Linear Poisson Processes," <i>None,</i> 2001.en_US
dc.identifier.urihttps://hdl.handle.net/1911/20447en_US
dc.language.isoengen_US
dc.subjectPoissonen_US
dc.subjectmultiscaleen_US
dc.subjectpolynomialen_US
dc.subject.keywordPoissonen_US
dc.subject.keywordmultiscaleen_US
dc.subject.keywordpolynomialen_US
dc.subject.otherWavelet based Signal/Image Processingen_US
dc.subject.otherMultiscale Methodsen_US
dc.titleMultiresolution Intensity Estimation of Piecewise Linear Poisson Processesen_US
dc.typeReporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Wil2001Apr13Multireso.PDF
Size:
151.07 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Wil2001Apr13Multireso.PS
Size:
247.11 KB
Format:
Postscript Files