Network Traffic Modeling using a Multifractal Wavelet Model
dc.citation.bibtexName | inproceedings | en_US |
dc.citation.conferenceName | European Congress of Mathematics | en_US |
dc.citation.firstpage | 609 | en_US |
dc.citation.lastpage | 618 | en_US |
dc.citation.location | Barcelona, Spain | en_US |
dc.contributor.author | Riedi, Rudolf H. | en_US |
dc.contributor.author | Ribeiro, Vinay Joseph | en_US |
dc.contributor.author | Crouse, Matthew | en_US |
dc.contributor.author | Baraniuk, Richard G. | en_US |
dc.contributor.org | Digital Signal Processing (http://dsp.rice.edu/) | en_US |
dc.date.accessioned | 2007-10-31T01:01:30Z | en_US |
dc.date.available | 2007-10-31T01:01:30Z | en_US |
dc.date.issued | 2000-07-01 | en_US |
dc.date.modified | 2006-07-24 | en_US |
dc.date.note | 2006-07-19 | en_US |
dc.date.submitted | 2000-07-01 | en_US |
dc.description | Conference Paper | en_US |
dc.description.abstract | In this paper, we develop a simple and powerful multiscale model for syntheizing nonFaussian, long-range dependent (LRD) network traffic. Although wavelets effectively decorrelate LRD data, wavelet-based models have generally been restricted by a Gaussianity assumption that can be un-realistic for traffic. Using a multiplicative superstructure on top of the Haar wavelet transform, we exploit the decorrelating properties of wavelets while simultaneously capturing the positivity and "spikiness" of nonGaussian traffic. This leads to a swift O(N) algorithm for fitting and synthesizing N-point data sets. The resulting model belongs to the class of multifractal cascades, a set of processes with rich statistical properties. We elucidate our model's ability to capture the covariance structure of real data and then fit it to real traffic traces. Queueing experiments demonstrate the accuracy of the model for matching real data. | en_US |
dc.description.sponsorship | Texas Instruments | en_US |
dc.description.sponsorship | Defense Advanced Research Projects Agency | en_US |
dc.description.sponsorship | Office of Naval Research | en_US |
dc.description.sponsorship | National Science Foundation | en_US |
dc.identifier.citation | R. H. Riedi, V. J. Ribeiro, M. Crouse and R. G. Baraniuk, "Network Traffic Modeling using a Multifractal Wavelet Model," 2000. | en_US |
dc.identifier.doi | http://dx.doi.org/10.1007/978-3-0348-8266-8_54 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/20275 | en_US |
dc.language.iso | eng | en_US |
dc.subject | long range dependent network traffic | en_US |
dc.subject.keyword | long range dependent network traffic | en_US |
dc.subject.other | DSP for Communications | en_US |
dc.title | Network Traffic Modeling using a Multifractal Wavelet Model | en_US |
dc.type | Conference paper | en_US |
dc.type.dcmi | Text | en_US |
Files
Original bundle
1 - 1 of 1