Short-Term Recurrence Krylov Subspace Methods for Nearly-Hermitian Matrices
dc.contributor.author | Embree, Mark | en_US |
dc.contributor.author | Sifuentes, Josef A. | en_US |
dc.contributor.author | Soodhalter, Kirk M. | en_US |
dc.contributor.author | Szyld, Daniel B. | en_US |
dc.contributor.author | Xue, Fei | en_US |
dc.date.accessioned | 2018-06-19T17:46:43Z | en_US |
dc.date.available | 2018-06-19T17:46:43Z | en_US |
dc.date.issued | 2011-10 | en_US |
dc.date.note | October 2011 | en_US |
dc.description.abstract | The Progressive GMRES algorithm, introduced by Beckermann and Reichel in 2008, is a residual-minimizing short-recurrence Krylov subspace method for solving a linear system in which the coefficient matrix has a low-rank skew-Hermitian part. We analyze this algorithm, observing a critical instability that makes the method unsuitable for some problems. To work around this issue we introduce a different short-term recurrence method based on Krylov subspaces for such matrices, which can be used as either a solver or a preconditioner. Numerical experiments compare this method to alternative algorithms. | en_US |
dc.format.extent | 20 pp | en_US |
dc.identifier.citation | Embree, Mark, Sifuentes, Josef A., Soodhalter, Kirk M., et al.. "Short-Term Recurrence Krylov Subspace Methods for Nearly-Hermitian Matrices." (2011) <a href="https://hdl.handle.net/1911/102188">https://hdl.handle.net/1911/102188</a>. | en_US |
dc.identifier.digital | TR11-14 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/102188 | en_US |
dc.language.iso | eng | en_US |
dc.title | Short-Term Recurrence Krylov Subspace Methods for Nearly-Hermitian Matrices | en_US |
dc.type | Technical report | en_US |
dc.type.dcmi | Text | en_US |
Files
Original bundle
1 - 1 of 1