Short-Term Recurrence Krylov Subspace Methods for Nearly-Hermitian Matrices

dc.contributor.authorEmbree, Marken_US
dc.contributor.authorSifuentes, Josef A.en_US
dc.contributor.authorSoodhalter, Kirk M.en_US
dc.contributor.authorSzyld, Daniel B.en_US
dc.contributor.authorXue, Feien_US
dc.date.accessioned2018-06-19T17:46:43Zen_US
dc.date.available2018-06-19T17:46:43Zen_US
dc.date.issued2011-10en_US
dc.date.noteOctober 2011en_US
dc.description.abstractThe Progressive GMRES algorithm, introduced by Beckermann and Reichel in 2008, is a residual-minimizing short-recurrence Krylov subspace method for solving a linear system in which the coefficient matrix has a low-rank skew-Hermitian part. We analyze this algorithm, observing a critical instability that makes the method unsuitable for some problems. To work around this issue we introduce a different short-term recurrence method based on Krylov subspaces for such matrices, which can be used as either a solver or a preconditioner. Numerical experiments compare this method to alternative algorithms.en_US
dc.format.extent20 ppen_US
dc.identifier.citationEmbree, Mark, Sifuentes, Josef A., Soodhalter, Kirk M., et al.. "Short-Term Recurrence Krylov Subspace Methods for Nearly-Hermitian Matrices." (2011) <a href="https://hdl.handle.net/1911/102188">https://hdl.handle.net/1911/102188</a>.en_US
dc.identifier.digitalTR11-14en_US
dc.identifier.urihttps://hdl.handle.net/1911/102188en_US
dc.language.isoengen_US
dc.titleShort-Term Recurrence Krylov Subspace Methods for Nearly-Hermitian Matricesen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR11-14.pdf
Size:
351.86 KB
Format:
Adobe Portable Document Format