Bacterial attachment and transport through porous media: The effects of bacterial cell characteristics

dc.contributor.advisorWard, C. H.
dc.creatorDuston, Karen Lansford
dc.date.accessioned2009-06-04T00:20:01Z
dc.date.available2009-06-04T00:20:01Z
dc.date.issued1995
dc.description.abstractThe effects of several microbial, chemical and physical parameters on bacterial attachment was studied in batch adsorption and column transport studies. Specifically, the role of bacterial characteristics, ionic strength of solution, roughness of solid surfaces, and hydraulic conductivity were tested. Using particle removal theory, the collision efficiency factor ($\alpha$) was calculated from the breakthrough of the cells (C/Co) in the columns. The values of $\alpha$ varied over three orders of magnitude. The distance that the cells were predicted to travel through the porous medium was calculated assuming C/Co = 0.05 (95% retention). Predicted travel ranged from less than 5 cm to almost 10 km. Bacterial surface characteristics that apparently affected attachment were electrophoretic mobility, hydrophobicity, and biopolymer production. Electrostatic interactions, described by DLVO theory, governed attachment of hydrophilic cells to hydrophilic surfaces. Hydrophobic interactions dominated attachment of hydrophobic cells. Steric hindrance may have resulted from the adsorption of extracellular biosurfactant onto cell and solid surfaces. Size also influenced retention of the cells in the porous medium. Cells less than 0.1 $\mu$m and greater than 3.0 $\mu$m in diameter were retained to a greater extent than cells with diameters within this range. Increased ionic strength resulted in increased attachment of cells. Attachment to sand grains was greater than attachment to glass beads, possibly because of the rougher surfaces. Lower hydraulic conductivity resulted in greater retention of cells.
dc.format.extent408 p.en_US
dc.format.mimetypeapplication/pdf
dc.identifier.callnoTHESIS ENV. SCI. 1995 DUSTON
dc.identifier.citationDuston, Karen Lansford. "Bacterial attachment and transport through porous media: The effects of bacterial cell characteristics." (1995) Diss., Rice University. <a href="https://hdl.handle.net/1911/16815">https://hdl.handle.net/1911/16815</a>.
dc.identifier.urihttps://hdl.handle.net/1911/16815
dc.language.isoeng
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
dc.subjectEnvironmental science
dc.subjectMicrobiology
dc.subjectMechanical engineering
dc.titleBacterial attachment and transport through porous media: The effects of bacterial cell characteristics
dc.typeThesis
dc.type.materialText
thesis.degree.departmentEnvironmental Science
thesis.degree.disciplineEngineering
thesis.degree.grantorRice University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
9610634.PDF
Size:
13 MB
Format:
Adobe Portable Document Format