Advances in the Analysis of Spatially Aggregated Data

dc.contributor.advisorEnsor, Katherine Ben_US
dc.creatorSchedler, Julia Cen_US
dc.date.accessioned2020-04-27T19:14:17Zen_US
dc.date.available2020-04-27T19:14:17Zen_US
dc.date.created2019-12en_US
dc.date.issued2020-04-23en_US
dc.date.submittedDecember 2019en_US
dc.date.updated2020-04-27T19:14:17Zen_US
dc.description.abstractAn understanding of the spatial relationships in sociological and epidemiological applications is an important tool in the analysis of urban data. While point level data (e.g. observations at a given latitude/longitude) provide the most detail about spatial phenomenon, spatial data aggregated to the level of relevant municipal regions is easily accessible and can provide insights at a level useful for policy decisions for governments and communities. This work identifies two areas of focus in the analysis of spatially aggregated data. First, a new specification for dependence in spatial regression models for aggregated data using the Hausdorff distance and extended Hausdorff distance is introduced. The new dependence structure is shown to account for the shape and orientation of the irregular and disconnected regions often encountered in practice and evaluated in the context of model performance as well as a real data example. An R package compatible with existing spatial packages which implements the construction of spatial weight matrices generated using the (extended) Hausdorff distance is provided along with a vignette illustrating its use on real data. Second, the idea of a spatial case-crossover model is explored in the context of connection to existing spatial methods. A method for including spatial dependence in a spatio-temporal case-crossover model is also explored.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationSchedler, Julia C. "Advances in the Analysis of Spatially Aggregated Data." (2020) Diss., Rice University. <a href="https://hdl.handle.net/1911/108388">https://hdl.handle.net/1911/108388</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/108388en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectspatial statisticsen_US
dc.subjectcase crossover analysisen_US
dc.subjectspatial weight matrixen_US
dc.subjectareal dataen_US
dc.titleAdvances in the Analysis of Spatially Aggregated Dataen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentStatisticsen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SCHEDLER-DOCUMENT-2019.pdf
Size:
4.12 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.84 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.61 KB
Format:
Plain Text
Description: