Algorithms for Solving Sparse Nonlinear Systems of Equations

dc.contributor.authorLi, Guangyeen_US
dc.date.accessioned2018-06-18T17:27:10Zen_US
dc.date.available2018-06-18T17:27:10Zen_US
dc.date.issued1986-04en_US
dc.date.noteApril 1986en_US
dc.descriptionThis work was also published as a Rice University thesis/dissertation: http://hdl.handle.net/1911/15992en_US
dc.description.abstractIn this thesis, we present four algorithms for solving sparse nonlinear systems of equations: the partitioned secant algorithm, the CM-successive displacement algorithm, the modified CM-successive displacement algorithm and the combined secant algorithm. The partitioned secant algorithm is a combination of a finite difference algorithm and a secant algorithm which requires one less function evaluation at each iteration than Curtis, Powell and Reid's algorithm (the CPR algorithm). The combined secant algorithm is a combination of the partitioned secant algorithm and Schubert's algorithm which incorporates the advantages of both algorithms by considering some special structure of the Jacobians to further reduce the number of function evaluations. The CM-successive displacement algorithm is based on Coleman and Mor&eacute;'s partitioning algorithm and a column update algorithm, and it needs only two function values at each iteration. The modified CM-successive displacement algorithm is a combination of the CM-successive displacement algorithm and Schubert's algorithm. It also needs only two function values at each iteration but it uses the information at every step more effectively. The locally <em>q</em>-superlinear convergence results, the r-convergence order estimates and the Kantorovich-type analyses show that these four algorithms have good local convergence properties. The numerical results indicate that the partitioned secant algorithm and the modified CM-successive displacement algorithm are probably more efficient than the CPR algorithm and Schubert's algorithm.en_US
dc.format.extent54 ppen_US
dc.identifier.citationLi, Guangye. "Algorithms for Solving Sparse Nonlinear Systems of Equations." (1986) <a href="https://hdl.handle.net/1911/101594">https://hdl.handle.net/1911/101594</a>.en_US
dc.identifier.digitalTR86-06en_US
dc.identifier.urihttps://hdl.handle.net/1911/101594en_US
dc.language.isoengen_US
dc.titleAlgorithms for Solving Sparse Nonlinear Systems of Equationsen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR86-06.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format