Analysis of the Lagrange-SQP-Newton Method for the Control of a Phase Field Equation

dc.contributor.authorHeinkenschloss, Matthiasen_US
dc.contributor.authorTröltzsch, Fredien_US
dc.date.accessioned2018-06-18T17:47:05Zen_US
dc.date.available2018-06-18T17:47:05Zen_US
dc.date.issued1998-10en_US
dc.date.noteOctober 1998en_US
dc.description.abstractThis paper investigates the local convergence of the Lagrange-SQP-Newton method applied to an optimal control problem governed by a phase field equation with distributed control. The phase field equation is a system of two semilinear parabolic differential equations. Stability analysis of optimization problems and regularity results for parabolic differential equations are used to prove convergence of the controls with respect to the L²(Q) norm and with respect to the L^{infinity}(Q) norm.en_US
dc.format.extent31 ppen_US
dc.identifier.citationHeinkenschloss, Matthias and Tröltzsch, Fredi. "Analysis of the Lagrange-SQP-Newton Method for the Control of a Phase Field Equation." (1998) <a href="https://hdl.handle.net/1911/101905">https://hdl.handle.net/1911/101905</a>.en_US
dc.identifier.digitalTR98-23en_US
dc.identifier.urihttps://hdl.handle.net/1911/101905en_US
dc.language.isoengen_US
dc.titleAnalysis of the Lagrange-SQP-Newton Method for the Control of a Phase Field Equationen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR98-23.pdf
Size:
727.69 KB
Format:
Adobe Portable Document Format