Iron Sulfide Precipitation Kinetics, Solubility, Phase Transformation, and Corrosion versus Temperature and Ionic Strength

Date
2017-04-13
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

A reliable anoxic plug flow reactor has been developed to study iron sulfide (FeS) precipitation kinetics, solubility, phase transformation, and corrosion simultaneously. The effects of temperature (23 – 125 °C), ionic strength (0.00886 – 5.03 mol/kg), and ferrous iron (Fe(II)) to sulfide (S(-II)) concentration ratio (1:20 to 1:5) were studied. The kinetics of FeS precipitation was found to be a pseudo first order reaction with respect to Fe(II) concentration, when Fe(II) concentration is significantly lower than S(-II) concentration. FeS precipitation kinetics can be accelerated by high temperature and high ionic strength, but not be affected by Fe(II) to S(-II) concentration ratio at the tested ratio range. A model for predicting FeS solubility and precipitation was developed by using FeS solubility data measured in this study and data from literature. At temperature ≤ 100 °C, freshly precipitated FeS was found to be mackinawite. Mackinawite can transform to troilite at temperature ≥ 50 °C, and low ionic strength favors the phase transformation. Also, mackinawite formed from steel corrosion seems to be easier to transform to troilite than the mackinawite formed from precipitation. H2S corrosion and FeS scale retention on carbon steel can be significantly accelerated by high temperature and impeded by extra high ionic strength (IS ≥ 4 mol/kg). This study presented a new approach for iron sulfide study and contributed valuable FeS thermodynamics and kinetics data for FeS prediction and control in industry.

Description
Degree
Doctor of Philosophy
Type
Thesis
Keywords
iron sulfide, precipitation kinetics, solubility, phase transformation, corrosion, deposition, anoxic.
Citation

Liu, Ya. "Iron Sulfide Precipitation Kinetics, Solubility, Phase Transformation, and Corrosion versus Temperature and Ionic Strength." (2017) Diss., Rice University. https://hdl.handle.net/1911/96116.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page