Universal Distributed Sensing via Random Projections
dc.citation.bibtexName | inproceedings | en_US |
dc.citation.conferenceName | International Symposium on Integrated Processing in Sensor Networks | en_US |
dc.citation.firstpage | 177 | en_US |
dc.citation.lastpage | 185 | en_US |
dc.citation.location | Nashville, Tennessee | en_US |
dc.contributor.author | Wakin, Michael | en_US |
dc.contributor.author | Duarte, Marco F. | en_US |
dc.contributor.author | Baraniuk, Richard G. | en_US |
dc.contributor.author | Baron, Dror | en_US |
dc.contributor.org | Digital Signal Processing (http://dsp.rice.edu/) | en_US |
dc.date.accessioned | 2007-10-31T00:43:08Z | en_US |
dc.date.available | 2007-10-31T00:43:08Z | en_US |
dc.date.issued | 2006-04-01 | en_US |
dc.date.modified | 2006-07-17 | en_US |
dc.date.note | 2006-07-17 | en_US |
dc.date.submitted | 2006-04-01 | en_US |
dc.description | Conference Paper | en_US |
dc.description.abstract | This paper develops a new framework for distributed coding and compression in sensor networks based on distributed compressed sensing (DCS). DCS exploits both intra-signal and inter-signal correlations through the concept of joint sparsity; just a few measurements of a jointly sparse signal ensemble contain enough information for reconstruction. DCS is well-suited for sensor network applications, thanks to its simplicity, universality, computational asymmetry, tolerance to quantization and noise, robustness to measurement loss, and scalability. It also requires absolutely no inter- sensor collaboration. We apply our framework to several real world datasets to validate the framework. | en_US |
dc.identifier.citation | M. Wakin, M. F. Duarte, R. G. Baraniuk and D. Baron, "Universal Distributed Sensing via Random Projections," 2006. | en_US |
dc.identifier.doi | http://dx.doi.org/10.1145/1127777.1127807 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/19866 | en_US |
dc.language.iso | eng | en_US |
dc.subject | linear programming | en_US |
dc.subject | compressed sensing | en_US |
dc.subject | Sparsity | en_US |
dc.subject | greedy algorithms | en_US |
dc.subject | sensor networks | en_US |
dc.subject | correlation | en_US |
dc.subject.keyword | linear programming | en_US |
dc.subject.keyword | compressed sensing | en_US |
dc.subject.keyword | Sparsity | en_US |
dc.subject.keyword | greedy algorithms | en_US |
dc.subject.keyword | sensor networks | en_US |
dc.subject.keyword | correlation | en_US |
dc.subject.other | DSP for Communications | en_US |
dc.title | Universal Distributed Sensing via Random Projections | en_US |
dc.type | Conference paper | en_US |
dc.type.dcmi | Text | en_US |
Files
Original bundle
1 - 1 of 1