On the Convergence of the Iteration Sequence in Primal-Dual Interior-Point Methods

dc.contributor.authorTapia, R.A.en_US
dc.contributor.authorZhang, Y.en_US
dc.contributor.authorYe, Y.en_US
dc.date.accessioned2018-06-18T17:30:46Zen_US
dc.date.available2018-06-18T17:30:46Zen_US
dc.date.issued1991-08en_US
dc.date.noteAugust 1991 (Revised August 1993)en_US
dc.description.abstractThis research is concerned with the convergence of the iteration sequence generated by a primal-dual interior-point method for linear programming. It is known that this sequence converges when both the primal and the dual problems have unique solutions. However, convergence for general problems has been an open question now for quite some time. In this work we demonstrate that for general problems, under mild conditions, the iteration sequence converges.en_US
dc.format.extent26 ppen_US
dc.identifier.citationTapia, R.A., Zhang, Y. and Ye, Y.. "On the Convergence of the Iteration Sequence in Primal-Dual Interior-Point Methods." (1991) <a href="https://hdl.handle.net/1911/101725">https://hdl.handle.net/1911/101725</a>.en_US
dc.identifier.digitalTR91-24en_US
dc.identifier.urihttps://hdl.handle.net/1911/101725en_US
dc.language.isoengen_US
dc.titleOn the Convergence of the Iteration Sequence in Primal-Dual Interior-Point Methodsen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR91-24.pdf
Size:
277.64 KB
Format:
Adobe Portable Document Format