Electrodynamics of the low-latitude ionosphere

dc.contributor.advisorWolf, Richard A.en_US
dc.creatorRiley, Peteren_US
dc.date.accessioned2009-06-04T00:09:26Zen_US
dc.date.available2009-06-04T00:09:26Zen_US
dc.date.issued1994en_US
dc.description.abstractWe have undertaken a study of the low and mid latitude ionospheric electric field pattern, during both magnetospherically quiet and active periods. Our analysis can be conveniently split into two parts. i.In an effort to study the penetration of magnetospheric electric fields to low latitudes, we have compared Jicamarca F-region vertical drifts for 10 radar-observation periods with the auroral boundary index (ABI). The ABI is the latitude of the equatorward edge of the diffuse aurora at local midnight, as estimated from precipitating-electron fluxes measured from DMSP spacecraft. The periods occurred in the interval January 1984 to June 1991 inclusive and each lasted between 2 and 5 days. We focus on periods that occurred in September 1986, March 1990, and June 1991. In the post-midnight sector, where we expect the penetration to be strongest, we found many examples of correlation; specifically, associated with an ionospheric updraft (implying an eastward electric field) is a strong poleward motion of the auroral boundary. However, we also found a significant number of cases where there was little or no correlation. We conclude that there is only mediocre agreement between the observed Sudden Postmidnight Ionospheric Events (SPIEs) and the ABI. These SPIEs have also been compared with other magnetospheric parameters, namely $D\sb{\rm st}$ IMF $B\sb{z}$ and the polar cap potential. $D\sb{\rm st}$ showed significantly better correlation with the SPIEs. We summarize the proposed models for SPIEs and compare their predictions with the data, concluding that no single model can account for all events. While it is clear that some of these SPIEs can be explained in terms of direct penetration of magnetospheric electric fields, we suggest that the remainder may be due to magnetospherically-generated neutral wind effects. ii. We have constructed a model of the low- and mid-latitude potential distribution, applicable for both quiet and active times. We use the Mass-Spectrometer-Incoherent-Scatter (MSIS) model to input the number densities and temperature of the neutral species, and the International reference Ionosphere (IRI) model to input the electron/ion densities and temperatures. As our wind input we use the Horizontal Wind Model (HWM). We find that our model can reproduce the all of the main features of the low latitude ionosphere during quiet times, and supports some of our ideas about magnetospheric penetration during active periods. We use the model to probe the dependency of the low latitude penetration pattern on solar conditions and season and found that the inferred equatorial drifts are relatively insensitive to either. Thus we conclude that ionospheric pre-conditioning is unlikely to play a significant role. On the other hand, the low latitude penetration pattern is strongly dependent on the assumed poleward boundary.en_US
dc.format.extent199 p.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.callnoTHESIS SP. SCI. 1994 RILEYen_US
dc.identifier.citationRiley, Peter. "Electrodynamics of the low-latitude ionosphere." (1994) Diss., Rice University. <a href="https://hdl.handle.net/1911/16768">https://hdl.handle.net/1911/16768</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/16768en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectPlasma physicsen_US
dc.subjectAtmospheric sciencesen_US
dc.titleElectrodynamics of the low-latitude ionosphereen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentSpace Scienceen_US
thesis.degree.disciplineNatural Sciencesen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
9514222.PDF
Size:
6.34 MB
Format:
Adobe Portable Document Format