A New Formulation of Mixed Finite Element Methods for Second Order Elliptic Problems

dc.contributor.authorArbogast, Todden_US
dc.date.accessioned2018-06-18T17:30:45Zen_US
dc.date.available2018-06-18T17:30:45Zen_US
dc.date.issued1991-05en_US
dc.date.noteMay 1991en_US
dc.description.abstractIn this paper we show that mixed finite element methods for a fairly general second order elliptic problem with variable coefficients can be given a nonmixed formulation. We define an approximation method by incorporating some projection operators within a standard Galerkin method, which we call a projection finite element method. It is shown that for a given mixed method, if the projection method's finite element space Mh satisfies two conditions, then the two approximation methods are equivalent. These two conditions can be simplified for a single element in the case of mixed spaces possessing the usual vector projection operator. For any such mixed spaces defined on a geometrically regular partition of the domain, we can then easily construct appropriate conforming spaces Mh. We also present for several mixed methods alternative nonconforming spaces Mh that also satisfy the two conditions for equivalence.en_US
dc.format.extent15 ppen_US
dc.identifier.citationArbogast, Todd. "A New Formulation of Mixed Finite Element Methods for Second Order Elliptic Problems." (1991) <a href="https://hdl.handle.net/1911/101714">https://hdl.handle.net/1911/101714</a>.en_US
dc.identifier.digitalTR91-10en_US
dc.identifier.urihttps://hdl.handle.net/1911/101714en_US
dc.language.isoengen_US
dc.titleA New Formulation of Mixed Finite Element Methods for Second Order Elliptic Problemsen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR91-10.pdf
Size:
235.72 KB
Format:
Adobe Portable Document Format