Imaging and Visual Classification by Knowledge-Enhanced Compressive Imaging

Date
2015-09-10
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Description
Abstract

Compressive imaging is a technology that uses multiplexed measurements and the sparsity of many natural images to efficiently capture and reconstruct images. The compressive single pixel camera is one embodiment of such an imaging system and has proven capable of imaging static images, dynamic scenes, and entire hyperspectral datacubes using fewer measurements than the current schemes. However, for many imaging tasks prior information or models exists and when incorporated in the compressive measurement can greatly improve reconstructed result. In this thesis, we illustrate and quantify through simulation and experiment the effectiveness of knowledge-enhanced patterns over unbiased compressive measurements in a variety of applications including motion tracking, anomaly detection, and object recognition. In the case of motion tracking, one might interest in moving foreground. Given prior information about the moving foreground in the scene, we propose the design of patterns for foreground imaging. Then one can recover the dynamic scene through combining moving foreground from designed patterns and static background. We also implemented anomaly detection from compressive measurements. A set of detection criteria is implemented and proven to be effective. On top of that, we also introduced patterns selected from partial-complete set according to the geometric information of the anomaly point, which later shows improved effectiveness comparing with random patterns. For image classification, we implemented two methods to generate secant projections, which are optimized to preserve the difference between image classes. Lastly we illustrate the new design of single pixel based hyperspectral design. To reach that, the control of DMD chip and optics of SPC have been improved. Also we show results about implementation of compressive endmembers unmixing scheme for compressive sum frequency generation hyperspectral imaging system.

Description
Degree
Doctor of Philosophy
Type
Thesis
Keywords
Compressive Sensing, Single Pixel Camera, Anomaly Detection, Compressive Classification
Citation

Li, Yun. "Imaging and Visual Classification by Knowledge-Enhanced Compressive Imaging." (2015) Diss., Rice University. https://hdl.handle.net/1911/88091.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page