A flexible lattice model to study protein folding

Date
1996
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

The biological activity of protein molecules is central to life. It has been known for decades that this biological activity is dependent on the protein molecule achieving a particular geometric conformation. Simple lattice models have been developed to investigate the protein folding pathway since all-atom molecular dynamics simulations on the time scale of folding are beyond the current capabilities of computers. We present a new Monte Carlo lattice model to study the folding of heteropolymer chains. Previous lattice model studies of two-dimensional chains have been performed on square grids using pre-defined "move sets" of allowed moves. The motion of the polymer chain in these models is thus highly constrained. In order to add greater flexibility, we use a triangular lattice and allow the chain to choose its own moves. Physically unrealistic moves are prevented by including kinetic energy effects in the Metropolis algorithm. By looking at the results, we are able to characterize all of the possible one and two particle moves in the two-dimensional model and sort them according to relative importance. This information will be used to guide simplified molecular dynamics studies. We also find that the initial phase of the folding process is a rapid collapse to a relatively compact state which is entropically driven. The model has been extended to three dimensions. The increased difficulty of working in three-dimensions as well as the preliminary results will be discussed.

Description
Degree
Doctor of Philosophy
Type
Thesis
Keywords
Physical chemistry, Biochemistry
Citation

Nunes, Nicole Lynne. "A flexible lattice model to study protein folding." (1996) Diss., Rice University. https://hdl.handle.net/1911/16929.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page