A Fast and Efficient Sift Detector Using The Mobile GPU
dc.citation.conferenceDate | 2013 | en_US |
dc.citation.conferenceName | IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) | en_US |
dc.citation.firstpage | 2674 | en_US |
dc.citation.lastpage | 2678 | en_US |
dc.citation.location | Vancouver, Canada | en_US |
dc.contributor.author | Rister, Blaine | en_US |
dc.contributor.author | Wang, Guohui | en_US |
dc.contributor.author | Wu, Michael | en_US |
dc.contributor.author | Cavallaro, Joseph R. | en_US |
dc.date.accessioned | 2013-10-25T21:19:47Z | en_US |
dc.date.available | 2013-10-25T21:19:47Z | en_US |
dc.date.issued | 2013-06 | en_US |
dc.description.abstract | Emerging mobile applications, such as augmented reality, demand robust feature detection at high frame rates. We present an implementation of the popular Scale-Invariant Feature Transform (SIFT) feature detection algorithm that incorporates the powerful graphics processing unit (GPU) in mobile devices. Where the usual GPU methods are inefficient on mobile hardware, we propose a heterogeneous dataflow scheme. By methodically partitioning the computation, compressing the data for memory transfers, and taking into account the unique challenges that arise out of the mobile GPU, we are able to achieve a speedup of 4-7x over an optimized CPU version, and a 6.4x speedup over a published GPU implementation. Additionally, we reduce energy consumption by 87 percent per image. We achieve near-realtime detection without compromising the original algorithm. | en_US |
dc.description.sponsorship | Samsung | en_US |
dc.description.sponsorship | US National Science Foundation grant EECS- 1232274 | en_US |
dc.description.sponsorship | US National Science Foundation grant EECS-0925942 | en_US |
dc.description.sponsorship | US National Science Foundation grant CNS-0923479 | en_US |
dc.identifier.citation | B. Rister, G. Wang, M. Wu and J. R. Cavallaro, "A Fast and Efficient Sift Detector Using The Mobile GPU," 2013. | en_US |
dc.identifier.doi | http://dx.doi.org/10.1109/ICASSP.2013.6638141 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/75008 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | IEEE | en_US |
dc.subject | computer vision | en_US |
dc.subject | mobile computing | en_US |
dc.subject | feature detection | en_US |
dc.subject | graphics processing unit (GPU) | en_US |
dc.subject | OpenGL for Embedded Systems (OpenGL ES) | en_US |
dc.title | A Fast and Efficient Sift Detector Using The Mobile GPU | en_US |
dc.type | Conference paper | en_US |
dc.type.dcmi | Text | en_US |
dc.type.dcmi | Text | en_US |