Optimization governed by stochastic partial differential equations

Date
2010
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

This thesis provides a rigorous framework for the solution of stochastic elliptic partial differential equation (SPDE) constrained optimization problems. In modeling physical processes with differential equations, much of the input data is uncertain (e.g. measurement errors in the diffusivity coefficients). When uncertainty is present, the governing equations become a family of equations indexed by a stochastic variable. Since solutions of these SPDEs enter the objective function, the objective function usually involves statistical moments. These optimization problems governed by SPDEs are posed as a particular class of optimization problems in Banach spaces. This thesis discusses Monte Carlo, stochastic Galerkin, and stochastic collocation methods for the numerical solution of SPDEs and identifies the stochastic collocation method as particularly useful for the optimization of SPDEs. This thesis extends the stochastic collocation method to the optimization context and explores the decoupling nature of this method for gradient and Hessian computations.

Description
Degree
Master of Arts
Type
Thesis
Keywords
Applied mathematics, Mathematics
Citation

Kouri, Drew P.. "Optimization governed by stochastic partial differential equations." (2010) Master’s Thesis, Rice University. https://hdl.handle.net/1911/62002.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page