Multiplicative Multiscale Image Decompositions: Analysis and Modeling

dc.citation.bibtexNameinproceedingsen_US
dc.citation.conferenceNameSPIE Technical Conference on Wavelet Applications in Signal Processingen_US
dc.citation.locationSan Diego, CAen_US
dc.citation.volumeNumber4119en_US
dc.contributor.authorRomberg, Justinen_US
dc.contributor.authorRiedi, Rudolf H.en_US
dc.contributor.authorChoi, Hyeokhoen_US
dc.contributor.authorBaraniuk, Richard G.en_US
dc.contributor.orgDigital Signal Processing (http://dsp.rice.edu/)en_US
dc.date.accessioned2007-10-31T01:02:29Zen_US
dc.date.available2007-10-31T01:02:29Zen_US
dc.date.issued2000-07-01en_US
dc.date.modified2006-06-26en_US
dc.date.note2001-09-20en_US
dc.date.submitted2000-07-01en_US
dc.descriptionConference Paperen_US
dc.description.abstractMultiscale processing, in particular using the wavelet transform, has emerged as an incredibly effective paradigm for signal processing and analysis. In this paper, we discuss a close relative of the Haar wavelet transform, the multiscale multiplicative decomposition. While the Haar transform captures the differences between signal approximations at different scales, the multiplicative decomposition captures their ratio. The multiplicative decomposition has many of the properties that have made wavelets so successful. Most notably, the multipliers are a sparse representation for smooth signals, they have a dependency structure similar to wavelet coefficients, and they can be calculated efficiently. The multiplicative decomposition is also a more natural signal representation than the wavelet transform for some problems. For example, it is extremely easy to incorporate positivity constraints into multiplier domain processing. In addition, there is a close relationship between the multiplicative decomposition and the Poisson process; a fact that has been exploited in the field of photon-limited imaging. In this paper, we will show that the multiplicative decomposition is also closely tied with the Kullback-Leibler distance between two signals. This allows us to derive an n-term KL approximation scheme using the multiplicative decomposition.en_US
dc.identifier.citationJ. Romberg, R. H. Riedi, H. Choi and R. G. Baraniuk, "Multiplicative Multiscale Image Decompositions: Analysis and Modeling," vol. 4119, 2000.en_US
dc.identifier.doihttp://dx.doi.org/10.1117/12.408660en_US
dc.identifier.urihttps://hdl.handle.net/1911/20294en_US
dc.language.isoengen_US
dc.subjectHaar wavelet transformen_US
dc.subjectmultiscale processingen_US
dc.subjectPoisson processen_US
dc.subjectKullback-Leibler (KL)en_US
dc.subject.keywordHaar wavelet transformen_US
dc.subject.keywordmultiscale processingen_US
dc.subject.keywordPoisson processen_US
dc.subject.keywordKullback-Leibler (KL)en_US
dc.titleMultiplicative Multiscale Image Decompositions: Analysis and Modelingen_US
dc.typeConference paperen_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Rom2000Jan5Multiplica.PDF
Size:
262.71 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Rom2000Jan5Multiplica.PS
Size:
1.49 MB
Format:
Postscript Files