A Variable-Metric Variant of the Karmarkar Algorithm for Linear Programming

Date
1987-05
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

The most time-consuming part of the Karmarkar algorithm for linear programming is computation of the step direction, which requires the projection of a vector onto the nullspace of a matrix that changes at each iteration. We present a variant of the Karmarkar algorithm that uses standard variable-metric techniques in an innovative way to approximate this projection. We prove that the modified algorithm that we construct using a step direction obtained from this approximation retains the polynomial-time complexity of the Karmarkar algorithm. We extend applicability of the modified algorithm to the solution of linear programming problems with unknown optimal value, using a construction of monotonic lower bounds on the optimal objective value that approximates the lower bound construction of Todd and Burrell. We show that our modified algorithm for solving problems with unknown optimal value also retains the polynomial-time complexity ofthe Karmarkar algorithm. Computational testing has verified that our modification substantially reduces the number of matrix factorizations needed for the solution of linear programming problems, compared to the number of matrix factorizations required by the Karmarkar algorithm.

Description
This work was also published as a Rice University thesis/dissertation: http://hdl.handle.net/1911/16112
Advisor
Degree
Type
Technical report
Keywords
Citation

Turner, Kathryn. "A Variable-Metric Variant of the Karmarkar Algorithm for Linear Programming." (1987) https://hdl.handle.net/1911/101624.

Has part(s)
Forms part of
Published Version
Rights
Link to license
Citable link to this page