Entropy Stable Discontinuous Galerkin-Fourier Methods

dc.contributor.advisorChan, Jesseen_US
dc.creatorLin, Yiminen_US
dc.date.accessioned2020-09-23T14:21:59Zen_US
dc.date.available2020-09-23T14:21:59Zen_US
dc.date.created2020-12en_US
dc.date.issued2020-09-23en_US
dc.date.submittedDecember 2020en_US
dc.date.updated2020-09-23T14:21:59Zen_US
dc.description.abstractEntropy stable discontinuous Galerkin methods for nonlinear conservation laws replicate an entropy inequality at semi-discrete level. The construction of such methods depends on summation-by-parts (SBP) operators and flux differencing using entropy conservative finite volume fluxes. In this work, we propose a discontinuous Galerkin-Fourier method for systems of nonlinear conservation laws, which is suitable for simulating flows with spanwise homogeneous geometries. The resulting method is semi-discretely entropy conservative or entropy stable. Computational efficiency is achieved by GPU acceleration using a two-kernel splitting. Numerical experiments in 3D confirm the stability and accuracy of the proposed method.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLin, Yimin. "Entropy Stable Discontinuous Galerkin-Fourier Methods." (2020) Master’s Thesis, Rice University. <a href="https://hdl.handle.net/1911/109372">https://hdl.handle.net/1911/109372</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/109372en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectNumerical PDEsen_US
dc.subjectHigh order methodsen_US
dc.subjectDiscontinuous Galerkin methodsen_US
dc.subjectHigh performance computingen_US
dc.titleEntropy Stable Discontinuous Galerkin-Fourier Methodsen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentComputational and Applied Mathematicsen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Artsen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LIN-DOCUMENT-2020.pdf
Size:
2.54 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.84 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.6 KB
Format:
Plain Text
Description: