Convergence of a Discontinuous Galerkin Method For the Miscible Displacement Under Minimal Regularity
dc.contributor.author | Rivière, Béatrice M. | en_US |
dc.contributor.author | Walkington, Noel | en_US |
dc.date.accessioned | 2018-06-19T17:45:07Z | en_US |
dc.date.available | 2018-06-19T17:45:07Z | en_US |
dc.date.issued | 2009-05 | en_US |
dc.date.note | May 2009 | en_US |
dc.description.abstract | Discontinuous Galerkin time discretizations are combined with the mixed finite element and continuous finite element methods to solve the miscible displacement problem. Stable schemes of arbitrary order in space and time are obtained. Under minimal regularity assumptions on the data, convergence of the scheme is proved by using compactness results for functions that may be discontinuous in time. | en_US |
dc.format.extent | 28 pp | en_US |
dc.identifier.citation | Rivière, Béatrice M. and Walkington, Noel. "Convergence of a Discontinuous Galerkin Method For the Miscible Displacement Under Minimal Regularity." (2009) <a href="https://hdl.handle.net/1911/102123">https://hdl.handle.net/1911/102123</a>. | en_US |
dc.identifier.digital | TR09-18 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/102123 | en_US |
dc.language.iso | eng | en_US |
dc.title | Convergence of a Discontinuous Galerkin Method For the Miscible Displacement Under Minimal Regularity | en_US |
dc.type | Technical report | en_US |
dc.type.dcmi | Text | en_US |
Files
Original bundle
1 - 1 of 1