Convergence of a Discontinuous Galerkin Method For the Miscible Displacement Under Minimal Regularity

dc.contributor.authorRivière, Béatrice M.en_US
dc.contributor.authorWalkington, Noelen_US
dc.date.accessioned2018-06-19T17:45:07Zen_US
dc.date.available2018-06-19T17:45:07Zen_US
dc.date.issued2009-05en_US
dc.date.noteMay 2009en_US
dc.description.abstractDiscontinuous Galerkin time discretizations are combined with the mixed finite element and continuous finite element methods to solve the miscible displacement problem. Stable schemes of arbitrary order in space and time are obtained. Under minimal regularity assumptions on the data, convergence of the scheme is proved by using compactness results for functions that may be discontinuous in time.en_US
dc.format.extent28 ppen_US
dc.identifier.citationRivière, Béatrice M. and Walkington, Noel. "Convergence of a Discontinuous Galerkin Method For the Miscible Displacement Under Minimal Regularity." (2009) <a href="https://hdl.handle.net/1911/102123">https://hdl.handle.net/1911/102123</a>.en_US
dc.identifier.digitalTR09-18en_US
dc.identifier.urihttps://hdl.handle.net/1911/102123en_US
dc.language.isoengen_US
dc.titleConvergence of a Discontinuous Galerkin Method For the Miscible Displacement Under Minimal Regularityen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR09-18.pdf
Size:
301.14 KB
Format:
Adobe Portable Document Format