Magnetic damping of an elastic conductor
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Many applications call for a design that maximizes the rate of energy decay. Typical problems of this class include one dimensional damped wave operators, where energy dissipation is caused by a damping operator acting on the velocity. Two damping operators are well understood: a multiplication operator (known as viscous damping) and a scaled Laplacian (known as Kelvin---Voigt damping). Paralleling the analysis of viscous damping, this thesis investigates energy decay for a novel third operator known as magnetic damping, where the damping is expressed via a rank-one self-adjoint operator, dependent on a function a. This operator describes a conductive monochord embedded in a spatially varying magnetic field perpendicular to the monochord and proportional to a. Through an analysis of the spectrum, this thesis suggests that unless a has a singularity at one boundary for any finite time, there exist initial conditions that give arbitrarily small energy decay at any time.
Description
Advisor
Degree
Type
Keywords
Citation
Hokanson, Jeffrey M.. "Magnetic damping of an elastic conductor." (2009) Master’s Thesis, Rice University. https://hdl.handle.net/1911/61897.