Active learning and adaptive sampling for non-parametric inference

dc.contributor.advisorBaraniuk, Richard G.en_US
dc.creatorCastro, Rui M.en_US
dc.date.accessioned2009-06-03T19:53:01Zen_US
dc.date.available2009-06-03T19:53:01Zen_US
dc.date.issued2008en_US
dc.description.abstractThis thesis presents a general discussion of active learning and adaptive sampling. In many practical scenarios it is possible to use information gleaned from previous observations to focus the sampling process, in the spirit of the "twenty-questions" game. As more samples are collected one can learn how to improve the sampling process by deciding where to sample next, for example. These sampling feedback techniques are generically known as active learning or adaptive sampling. Although appealing, analysis of such methodologies is difficult, since there are strong dependencies between the observed data. This is especially important in the presence of measurement uncertainty or noise. The main thrust of this thesis is to characterize the potential and fundamental limitations of active learning, particularly in non-parametric settings. First, we consider the probabilistic classification setting. Using minimax analysis techniques we investigate the achievable rates of classification error convergence for broad classes of distributions characterized by decision boundary regularity and noise conditions (which describe the observation noise near the decision boundary). The results clearly indicate the conditions under which one can expect significant gains through active learning. Furthermore we show that the learning rates derived are tight for "boundary fragment" classes in d-dimensional feature spaces when the feature marginal density is bounded from above and below. Second we study the problem of estimating an unknown function from noisy point-wise samples, where the sample locations are adaptively chosen based on previous samples and observations, as described above. We present results characterizing the potential and fundamental limits of active learning for certain classes of nonparametric regression problems, and also present practical algorithms capable of exploiting the sampling adaptivity and provably improving upon non-adaptive techniques. Our active sampling procedure is based on a novel coarse-to-fine strategy, based on and motivated by the success of spatially-adaptive methods such as wavelet analysis in nonparametric function estimation. Using the ideas developed when solving the function regression problem we present a greedy algorithm for estimating piecewise constant functions with smooth boundaries that is near minimax optimal but is computationally much more efficient than the best dictionary based method (in this case wedgelet approximations). Finally we compare adaptive sampling (where feedback guiding the sampling process is present) with non-adaptive compressive sampling (where non-traditional projection samples are used). It is shown that under mild noise compressive sampling can be competitive with adaptive sampling, but adaptive sampling significantly outperforms compressive sampling in lower signal-to-noise conditions. Furthermore this work also helps the understanding of the different behavior of compressive sampling under noisy and noiseless settings.en_US
dc.format.extent202 p.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.callnoTHESIS E.E. 2008 CASTROen_US
dc.identifier.citationCastro, Rui M.. "Active learning and adaptive sampling for non-parametric inference." (2008) Diss., Rice University. <a href="https://hdl.handle.net/1911/22265">https://hdl.handle.net/1911/22265</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/22265en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectStatisticsen_US
dc.subjectElectronicsen_US
dc.subjectElectrical engineeringen_US
dc.titleActive learning and adaptive sampling for non-parametric inferenceen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentElectrical Engineeringen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
3309839.PDF
Size:
10.46 MB
Format:
Adobe Portable Document Format