The Recurrent Neural Tangent Kernel
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The study of deep neural networks (DNNs) in the infinite-width limit, via the so-called neural tangent kernel (NTK) approach, has provided new insights into the dynamics of learning, generalization, and the impact of initialization. One key DNN architecture remains to be kernelized, namely, the recurrent neural network (RNN). In this thesis we introduce and study the Recurrent Neural Tangent Kernel (RNTK), which provides new insights into the behavior of overparametrized RNNs. A key property of the RNTK should greatly benefit practitioners is its ability to compare inputs of different length. To this end, we characterize how the RNTK weights different time steps to form its output under different initialization parameters and nonlinearity choices. A synthetic and 56 real-world data experiments demonstrate that the RNTK offers significant performance gains over other kernels, including standard NTKs, across a wide array of data sets.
Description
Advisor
Degree
Type
Keywords
Citation
Alemohammad, Sina. "The Recurrent Neural Tangent Kernel." (2022) Master’s Thesis, Rice University. https://hdl.handle.net/1911/113528.