Analyzing brain networks in language and social tasks using data-driven approaches

dc.contributor.advisorAazhang, Behnaamen_US
dc.creatorYellapantula, Sudhaen_US
dc.date.accessioned2021-08-16T19:25:20Zen_US
dc.date.available2023-08-01T05:01:12Zen_US
dc.date.created2021-08en_US
dc.date.issued2021-08-13en_US
dc.date.submittedAugust 2021en_US
dc.date.updated2021-08-16T19:25:20Zen_US
dc.description.abstractHumans are innately social, and we express ourselves primarily through language. We effortlessly articulate 2-3 words per second in fluent speech, yet this deceptively simple task is a highly complex multistage process in our brains. Unfortunately millions are affected by disease or brain-disorders leading to language and social dysfunction, with devastating consequences to their quality of life. The goal of this work was to improve our understanding of higher-order cognitive processes in the domain of language and social behavior, using a multitude of recording modalities and data-driven approaches. Three main questions were studied in this work - (1) Are language specific cognitive functions discretely computed within well-localized brain regions or rather by distributed networks? (2) When the brain receives ambiguous stimuli from the outside world, do more brain regions need to be involved to resolve this ambiguity, versus when the stimuli are unambiguous? (3) What is the effect of visual features on social cooperation, and its dependence on social context? These questions were studied using a variety of cognitive tasks and recording modalities - ECoG, EEG and spike recordings. To study the first question, we used intra-cranial electrocorticogram (ECoG) recordings from a picture naming task, to analyze the network phenomena of distributed cortical substrates supporting language. We estimated causality among brain regions with Directed Information, followed by a graph theoretic framework to extract task related dynamics from the causal estimates. Finally, we validated these functionally defined networks against the gold standard for causal inference - behavioral disruption with direct cortical stimulation. We demonstrate that the network measures combined with power have greater predictive capability for identifying critical language regions than discrete, regional power analyses alone. For the second question, we quantified the ambiguity in speech perception using network phenomena of distributed cortical substrates supporting language. We estimated statistical dependence among brain regions with Mutual Information. Using innovative baseline normalization, time-varying graphs were derived from the EEG data. These measures were tested in healthy subjects by comparing network measures derived from both ambiguous and clear stimuli. Finally, to further validate the hypothesis, we also evaluated the brain networks of an aphasic subject, who perceived all stimuli as ambiguous. We demonstrate that the network measures could clearly distinguish the aphasic patient's processing from the healthy subjects, providing evidence to support the increased brain activity to process more ambiguous stimuli. This allows for better understanding of the cognitive processes to measure patient impairment. For the third question, multi-unit recordings from freely moving non-human primates were obtained, while they performed a social cooperative task. They were equipped with wireless recording system, and scene and eye cameras to capture the field of view. We identified fixations, and the objects within receptive fields during the fixations. We tested the classification accuracy of the neural data to distinguish visual features identified during fixations, and find the social learning is captured by the improvement in distinguishing socially relevant objects with time. We test these effects in two brain regions - dorsolateral pre-frontal cortex and the higher visual area V4, and test the effects of attention on the task, lack of attention and effect of the social behavior of the partner monkey. Understanding the dynamics underlying these higher order language and social tasks can advance our understanding of cognitive disorders that can occur due to traumatic injury or disease, and could yield better remedial treatments or therapies in the future.en_US
dc.embargo.terms2023-08-01en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationYellapantula, Sudha. "Analyzing brain networks in language and social tasks using data-driven approaches." (2021) Diss., Rice University. <a href="https://hdl.handle.net/1911/111198">https://hdl.handle.net/1911/111198</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/111198en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectlanguageen_US
dc.subjectspeech perceptionen_US
dc.subjectECoGen_US
dc.subjectEEGen_US
dc.subjectinformation theoryen_US
dc.subjectdirected informationen_US
dc.subjectmutual informationen_US
dc.subjectgraph theoryen_US
dc.subjectsocial cooperationen_US
dc.subjectneural encodingen_US
dc.subjectnon-human primatesen_US
dc.subjectfreely movingen_US
dc.titleAnalyzing brain networks in language and social tasks using data-driven approachesen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentElectrical and Computer Engineeringen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.majorComputational neuroscienceen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
YELLAPANTULA-DOCUMENT-2021.pdf
Size:
44.88 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.83 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.6 KB
Format:
Plain Text
Description: