Unsupervised SAR Image Segmentation using Recursive Partitioning

dc.citation.bibtexNameinproceedingsen_US
dc.citation.conferenceNameSPIE Symp. OE/Aerospace Sensing and Dual Use Photonics, Algorithm for Synthetic Aperture Radar Imageen_US
dc.citation.locationOrlando, FLen_US
dc.citation.volumeNumber4053en_US
dc.contributor.authorBaraniuk, Richard G.en_US
dc.contributor.orgDigital Signal Processing (http://dsp.rice.edu/)en_US
dc.date.accessioned2007-10-31T01:08:06Zen_US
dc.date.available2007-10-31T01:08:06Zen_US
dc.date.issued2000-04-01en_US
dc.date.modified2006-07-05en_US
dc.date.note2004-01-08en_US
dc.date.submitted2000-04-01en_US
dc.descriptionConference Paperen_US
dc.description.abstractWe present a new approach to SAR image segmentation based on a Poisson approximation to the SAR amplitude image. It has been established that SAR amplitude images are well approximated using Rayleigh distributions. We show that, with suitable modifications, we can model piecewise homogeneous regions (such as tanks, roads, scrub, etc.) within the SAR amplitude image using a Poisson model that bears a known relation to the underlying Rayleigh distribution. We use the Poisson model to generate an efficient tree-based segmentation algorithm guided by the minimum description length (MDL) criteria. We present a simple fixed tree approach, and a more flexible adaptive recursive partitioning scheme. The segmentation is unsupervised, requiring no prior training, and very simple, efficient, and effective for identifying possible regions of interest (targets). We present simulation results on MSTAR clutter data to demonstrate the performance obtained with this parsing technique.en_US
dc.identifier.citationR. G. Baraniuk, "Unsupervised SAR Image Segmentation using Recursive Partitioning," vol. 4053, 2000.en_US
dc.identifier.doihttp://dx.doi.org/10.1117/12.396323en_US
dc.identifier.urihttps://hdl.handle.net/1911/20414en_US
dc.language.isoengen_US
dc.subjectsegmentationen_US
dc.subjectmultiscaleen_US
dc.subjectwaveletsen_US
dc.subjectMDLen_US
dc.subjectSARen_US
dc.subjectATRen_US
dc.subjectMSTARen_US
dc.subject.keywordsegmentationen_US
dc.subject.keywordmultiscaleen_US
dc.subject.keywordwaveletsen_US
dc.subject.keywordMDLen_US
dc.subject.keywordSARen_US
dc.subject.keywordATRen_US
dc.subject.keywordMSTARen_US
dc.subject.otherWavelet based Signal/Image Processingen_US
dc.titleUnsupervised SAR Image Segmentation using Recursive Partitioningen_US
dc.typeConference paperen_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Ven2000Apr5Unsupervi.PDF
Size:
425.24 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Ven2000Apr5Unsupervi.PS
Size:
2.64 MB
Format:
Postscript Files