Image data compression using wavelet decomposition

dc.contributor.advisorBurrus, C. Sidneyen_US
dc.creatorWei, Dongen_US
dc.date.accessioned2009-06-04T00:13:49Zen_US
dc.date.available2009-06-04T00:13:49Zen_US
dc.date.issued1995en_US
dc.description.abstractWavelet-based multi-resolution representation has become a cutting-edge technology in the area of image data compression. Though the discrete wavelet transform is closely related to the perfect-reconstruction octave-band filter banks used in subband coding schemes, wavelets have provided very promising new ideas and insights for image data compression. Wavelet-based coding techniques have achieved competitive performance compared with other well-known image coding techniques. This thesis develops a general framework for wavelet-based lossy image coding. We discuss two application problems and develop the corresponding fast algorithms using wavelet-based techniques (e.g., optimum wavelet-packet bases selection, wavelet-domain soft-thresholding).en_US
dc.format.extent55 p.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.callnoTHESIS E.E. 1995 WEIen_US
dc.identifier.citationWei, Dong. "Image data compression using wavelet decomposition." (1995) Master’s Thesis, Rice University. <a href="https://hdl.handle.net/1911/14006">https://hdl.handle.net/1911/14006</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/14006en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectElectronicsen_US
dc.subjectElectrical engineeringen_US
dc.titleImage data compression using wavelet decompositionen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentElectrical Engineeringen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Scienceen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1377067.PDF
Size:
1.96 MB
Format:
Adobe Portable Document Format