Numerical Estimates of Generalized Dimensions D_q for Negative q

dc.citation.bibtexNamearticleen_US
dc.citation.journalTitleJournal of Physics Aen_US
dc.contributor.authorRiedi, Rudolf H.en_US
dc.contributor.orgDigital Signal Processing (http://dsp.rice.edu/)en_US
dc.date.accessioned2007-10-31T01:01:04Zen_US
dc.date.available2007-10-31T01:01:04Zen_US
dc.date.issued1996-01-01en_US
dc.date.modified2004-01-26en_US
dc.date.submitted2004-01-14en_US
dc.descriptionJournal Paperen_US
dc.description.abstractUsual fixed-size box-counting algorithms are inefficient for computing generalized fractal dimensions D(<i>q</i>) in the range of <i>q</i><0. In this Letter we describe a new numerical algorithm specifically devised to estimate generalized dimensions for large negative <i>q</i>, providing evidence of its better performance. We compute the complete spectrum of the Hénon attractor, and interpret our results in terms of a "phase transition" between different multiplicative laws.en_US
dc.identifier.citationR. H. Riedi, "Numerical Estimates of Generalized Dimensions D_q for Negative q," <i>Journal of Physics A,</i> 1996.en_US
dc.identifier.urihttps://hdl.handle.net/1911/20265en_US
dc.language.isoengen_US
dc.subjectTemporaryen_US
dc.subject.keywordTemporaryen_US
dc.subject.otherMultifractalsen_US
dc.titleNumerical Estimates of Generalized Dimensions D_q for Negative qen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Rie1996Jan1NumericalE.PS
Size:
173.36 KB
Format:
Postscript Files