Numerical Estimates of Generalized Dimensions D_q for Negative q
dc.citation.bibtexName | article | en_US |
dc.citation.journalTitle | Journal of Physics A | en_US |
dc.contributor.author | Riedi, Rudolf H. | en_US |
dc.contributor.org | Digital Signal Processing (http://dsp.rice.edu/) | en_US |
dc.date.accessioned | 2007-10-31T01:01:04Z | en_US |
dc.date.available | 2007-10-31T01:01:04Z | en_US |
dc.date.issued | 1996-01-01 | en_US |
dc.date.modified | 2004-01-26 | en_US |
dc.date.submitted | 2004-01-14 | en_US |
dc.description | Journal Paper | en_US |
dc.description.abstract | Usual fixed-size box-counting algorithms are inefficient for computing generalized fractal dimensions D(<i>q</i>) in the range of <i>q</i><0. In this Letter we describe a new numerical algorithm specifically devised to estimate generalized dimensions for large negative <i>q</i>, providing evidence of its better performance. We compute the complete spectrum of the Hénon attractor, and interpret our results in terms of a "phase transition" between different multiplicative laws. | en_US |
dc.identifier.citation | R. H. Riedi, "Numerical Estimates of Generalized Dimensions D_q for Negative q," <i>Journal of Physics A,</i> 1996. | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/20265 | en_US |
dc.language.iso | eng | en_US |
dc.subject | Temporary | en_US |
dc.subject.keyword | Temporary | en_US |
dc.subject.other | Multifractals | en_US |
dc.title | Numerical Estimates of Generalized Dimensions D_q for Negative q | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
Files
Original bundle
1 - 1 of 1