An Alternating Direction and Projection Algorithm for Structure-enforced Matrix Factorization
Files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Structure-enforced matrix factorization (SeMF) represents a large class of mathematical models ap- pearing in various forms of principal component analysis, sparse coding, dictionary learning and other machine learning techniques useful in many applications including neuroscience and signal process- ing. In this paper, we present a unified algorithm framework, based on the classic alternating direction method of multipliers (ADMM), for solving a wide range of SeMF problems whose constraint sets per- mit low-complexity projections. We propose a strategy to adaptively adjust the penalty parameters which is the key to achieving good performance for ADMM. We conduct extensive numerical experiments to compare the proposed algorithm with a number of state-of-the-art special-purpose algorithms on test problems including dictionary learning for sparse representation and sparse nonnegative matrix factor- ization. Results show that our unified SeMF algorithm can solve different types of factorization problems as reliably and as efficiently as special-purpose algorithms. In particular, our SeMF algorithm provides the ability to explicitly enforce various combinatorial sparsity patterns that, to our knowledge, has not been considered in existing approaches.
Description
Advisor
Degree
Type
Keywords
Citation
Xu, Lijun, Yu, Bo and Zhang, Yin. "An Alternating Direction and Projection Algorithm for Structure-enforced Matrix Factorization." (2013) https://hdl.handle.net/1911/102222.