Controlling False Alarms with Support Vector Machines

dc.citation.bibtexNameinproceedingsen_US
dc.citation.conferenceNameIEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)en_US
dc.citation.firstpageV-589en_US
dc.citation.lastpageV-592en_US
dc.citation.locationToulouse, Franceen_US
dc.citation.volumeNumber5en_US
dc.contributor.authorDavenport, Mark A.en_US
dc.contributor.authorBaraniuk, Richard G.en_US
dc.contributor.authorScott, Clayton D.en_US
dc.contributor.orgDigital Signal Processing (http://dsp.rice.edu/)en_US
dc.date.accessioned2007-10-31T00:41:39Zen_US
dc.date.available2007-10-31T00:41:39Zen_US
dc.date.issued2006-05-01en_US
dc.date.modified2006-07-31en_US
dc.date.note2006-07-27en_US
dc.date.submitted2006-05-01en_US
dc.descriptionConference Paperen_US
dc.description.abstractWe study the problem of designing support vector classifiers with respect to a Neyman-Pearson criterion. Specifically, given a user-specified level alpha, 0 < alpha < 1, how can we ensure a false alarm rate no greater than a while minimizing the miss rate? We examine two approaches, one based on shifting the offset of a conventionally trained SVM and the other based on the introduction of class-specific weights. Our contributions include a novel heuristic for improved error estimation and a strategy for efficiently searching the parameter space of the second method. We also provide a characterization of the feasible parameter set of the 2nu-SVM on which the second approach is based. The proposed methods are compared on four benchmark datasets.en_US
dc.identifier.citationM. A. Davenport, R. G. Baraniuk and C. D. Scott, "Controlling False Alarms with Support Vector Machines," vol. 5, 2006.en_US
dc.identifier.doihttp://dx.doi.org/10.1109/ICASSP.2006.1661344en_US
dc.identifier.urihttps://hdl.handle.net/1911/19832en_US
dc.language.isoengen_US
dc.relation.projecthttp://www.ece.rice.edu/~md/npsvm.phpen_US
dc.relation.softwarehttp://www.dsp.rice.edu/softwareen_US
dc.subjectparameter spaceen_US
dc.subject.keywordparameter spaceen_US
dc.subject.otherImage Processing and Pattern analysisen_US
dc.titleControlling False Alarms with Support Vector Machinesen_US
dc.typeConference paperen_US
dc.type.dcmiTexten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dav2006May5Controllin.PDF
Size:
165.52 KB
Format:
Adobe Portable Document Format