Experimental results and three-dimensional simulations of instabilities in a rotating lid-driven cylinder

Date
2012
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

An experimental setup for a rotating lid-driven cylinder problem is designed and constructed in the context of modeling bulk semiconductor crystal growth techniques. Details concerning construction of the experimental setup are included in the interest of reproducibility. Ultrasonic Doppler Velocimetry (UDV) is tested as a viable visualization technique for the lid-driven cylinder and experimental measurements of the flow field are compared to numerical simulations. The aspect ratio of the cylinder and the Reynolds number are the governing parameters for the problem. Experimental and computation results are presented for aspect ratio of 2.5 and Reynolds numbers up to 3000. Accurate UDV measurements of the steady, axisymmetric base flow are demonstrated for both water and a 20% glycerin-water mixture as the working fluid. The expected periodic, axisymmetric instability at Reynolds number of 3000 was unobserved by the UDV. However, related instabilities were observed at lower Reynolds numbers. Associated strengths and weaknesses of UDV for flow measurement are discussed.

Description
Degree
Master of Science
Type
Thesis
Keywords
Applied sciences, Mechanical engineering
Citation

Kong, Zhao Chad. "Experimental results and three-dimensional simulations of instabilities in a rotating lid-driven cylinder." (2012) Master’s Thesis, Rice University. https://hdl.handle.net/1911/70299.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page