Development and study of charge sensors for fast charge detection in quantum dots

Date
2007
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Charge detection at microsecond time-scales has far reaching consequences in both technology and in our understanding of electron dynamics in nanoscale devices such as quantum dots. Radio-frequency superconducting single electron transistors (RF-SET) and quantum point contacts (QPC) are ultra sensitive charge sensors operating near the quantum limit. The operation of RF-SETs outside the superconducting gap has been a topic of study; the sub-gap operation, especially in the presence of large quantum fluctuations of quasiparticles remains largely unexplored, both theoretically and experimentally. We have investigated the effects of quantum fluctuations of quasiparticles on the operation of RF-SETs for large values of the quasiparticle cotunneling parameter alpha = 8EJ/Ec, where EJ and Ec are the Josephson and charging energies. We find that, for alpha > 1, sub-gap RF-SET operation is still feasible despite quantum fluctuations that wash out quasiparticle tunneling thresholds. Such RF-SETs show linearity and signal-to-noise ratio superior to those obtained when quantum fluctuations are weak, while still demonstrating excellent charge sensitivity. We have operated a QPC charge detector in a radio frequency mode that allows fast charge detection in a bandwidth of several megahertz. The noise limiting the sensitivity of the charge detector is not the noise of a secondary amplifier, but the non-equilibrium device noise of the QPC itself. The noise power averaged over a measurement bandwidth of about 10MHz around the carrier frequency is in agreement with the theory of photon-assisted shot noise. Frequency-resolved measurements, however show several significant discrepancies with the theoretical predictions. The measurement techniques developed can also be used to investigate the noise of other semiconductor nanostructures such as quantum dots in the Kondo regime. A study of the noise characteristics alone can not determine whether the device is operating at the quantum limit; a characterization of back action is also necessary. The inelastic current through a double quantum dot system (DQD) is sensitive to the spectral density of voltage fluctuations in its electromagnetic environment. Electrical transport studies on a DQD system electrostatically coupled to an SET shows qualitative evidence of back-action of SET. The design and fabrication of a few electron DQD device with integrated RF-SET and QPC charge sensors for the study of back action of the sensors and real-time electron dynamics in the DQD are also discussed.

Description
Degree
Doctor of Philosophy
Type
Thesis
Keywords
Condensed matter physics
Citation

Thalakulam, Madhu. "Development and study of charge sensors for fast charge detection in quantum dots." (2007) Diss., Rice University. https://hdl.handle.net/1911/20655.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page