Influence based bit-quantization for machine learning: Cost Quality Tradeoffs

dc.contributor.advisorPalem, Krishna V.en_US
dc.creatorJiang, Mingchaoen_US
dc.date.accessioned2020-11-03T20:03:04Zen_US
dc.date.available2020-11-03T20:03:04Zen_US
dc.date.created2020-08en_US
dc.date.issued2020-10-30en_US
dc.date.submittedAugust 2020en_US
dc.date.updated2020-11-03T20:03:05Zen_US
dc.description.abstractDue to the significant computational cost associated with machine learning architectures such as neural networks or network for short, there has been significant interest in quantizing or reducing the number of bits used. Current quantization approaches treat all of the network parameters equally by allocating the same bit width budget to all of them. In this work we are proposing a quantization approach which allocates bit budgets to parameters preferentially based on their influence. Here, our notion of influence is inspired by the traditional definition of this concept from the Fourier analysis of Boolean functions. We show that guiding investment of bit budgets using influence can get acceptable accuracy with lower overall bit budgets when compared to approaches that do not use quantization. We show that by trading 4.5% in accuracy, we can gain in bit budgets by a factor of 28. To better understand our approach, we also considered allocating bit budgets through random allocations and found that an our influence based approach outperforms most of the time by noticeable margins. All of these results are based on the MNIST data set and our algorithm for computing influence is based on a simple and easy to implement greedy approach.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJiang, Mingchao. "Influence based bit-quantization for machine learning: Cost Quality Tradeoffs." (2020) Master’s Thesis, Rice University. <a href="https://hdl.handle.net/1911/109494">https://hdl.handle.net/1911/109494</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/109494en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectNeural Networksen_US
dc.subjectQuantizationen_US
dc.subjectBit Influenceen_US
dc.titleInfluence based bit-quantization for machine learning: Cost Quality Tradeoffsen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentComputer Scienceen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Scienceen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JIANG-DOCUMENT-2020.pdf
Size:
4.63 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.84 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.61 KB
Format:
Plain Text
Description: