Shift-Invariant Denoising using Wavelet-Domain Hidden Markov Trees

dc.citation.bibtexNameinproceedingsen_US
dc.citation.conferenceNameAsilomar Conference on Signals, Systems, and Computersen_US
dc.citation.locationPacific Grove, CAen_US
dc.contributor.authorRomberg, Justinen_US
dc.contributor.authorChoi, Hyeokhoen_US
dc.contributor.authorBaraniuk, Richard G.en_US
dc.contributor.orgDigital Signal Processing (http://dsp.rice.edu/)en_US
dc.date.accessioned2007-10-31T01:02:21Zen_US
dc.date.available2007-10-31T01:02:21Zen_US
dc.date.issued1999-10-20en_US
dc.date.modified2002-07-10en_US
dc.date.note2001-10-10en_US
dc.date.submitted1999-10-20en_US
dc.descriptionConference Paperen_US
dc.description.abstractWavelet-domain hidden Markov models have proven to be useful tools for statistical signal and image processing. The hidden Markov tree (HMT) model captures the key features of the joint statistics of the wavelet coefficients of realworld data. One potential drawback to the HMT framework is the need for computationally expensive iterative training (using the EM algorithm, for example). In this paper, we use image structure not yet recognized by the HMT to show that the HMT parameters of real-world, grayscale images have a certain form. This leads to a description of the HMT model with just nine meta-parameters (independent of the size of the image and the number of wavelet scales). We also observe that these nine meta-parameters are similar for many images. This leads to a universal HMT (uHMT) model for grayscale images. Algorithms using the uHMT require no training of any kind. While simple, a series of image estimation/denoising experiments show that the uHMT retains nearly all of the key structures modeled by the full HMT. Based on the uHMT model, we develop a shift-invariant wavelet denoising scheme that outperforms all algorithms in the current literature.en_US
dc.identifier.citationJ. Romberg, H. Choi and R. G. Baraniuk, "Shift-Invariant Denoising using Wavelet-Domain Hidden Markov Trees," 1999.en_US
dc.identifier.doihttp://dx.doi.org/10.1109/ACSSC.1999.831912en_US
dc.identifier.urihttps://hdl.handle.net/1911/20291en_US
dc.language.isoengen_US
dc.subjectshift-invariant denoisingen_US
dc.subjectwavelet-domain hidden markov treesen_US
dc.subject.keywordshift-invariant denoisingen_US
dc.subject.keywordwavelet-domain hidden markov treesen_US
dc.subject.otherWavelet based Signal/Image Processingen_US
dc.titleShift-Invariant Denoising using Wavelet-Domain Hidden Markov Treesen_US
dc.typeConference paperen_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Rom1999Oct5Shift-Inva.PDF
Size:
335.93 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Rom1999Oct5Shift-Inva.PS
Size:
696.22 KB
Format:
Postscript Files