Exploiting Feedback in Cooperative Relay Networks

Date
2005-08-01
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Recent results on multiple antenna transmission techniques have shown great po- tential in their ability to improve the overall performance in fading channels. Despite the promise shown by employing multiple antenna's, practical implementations may not be feasible due to size and hardware limitations of mobile nodes. Cooperative Cod- ing is a new transmission paradigm which pools together the resources of neighboring nodes in a network to improve performance without requiring multiple antennas at any of the mobile devices. The power of node collaboration can be seen by considering the relay channel, the simplest cooperative network. Recently, protocols have been developed for the wireless relay channel that allow the network to behave as a virtual multiple antenna system. In this thesis we show that in addition to e±cient network protocols, exploit- ing channel state information can yield even more performance in the relay setting by allowing for temporal power and rate control. When power control is used for a given transmission rate, minimizing the outage probability is the appropriate method to maximize performance in the block fading channel. In a relay setting, we derive the optimal power control strategy when the transmitters in the network have perfect knowledge of the network channel state. In practice having perfect channel state knowledge at the transmitters is not possible. In this direction, we derive a power control policy that minimizes the outage probability based on the rate of the feedback link. Interestingly, we observe that only a few bits of feedback are needed to extract much of the gains of the perfect feedback power control policy. For applications that can support a variable rate of transmission, such as data transfers, the feedback can be used to vary both the transmission rate and power. The appropriate performance metric in this case is throughput. We derive throughput maximizing policies for various cooperative transmission protocols. Once again, we show that with a limited rate of feedback, signi¯cant throughput gains are possible in relay networks. Interestingly, we show that simultaneous power and rate adaptation is usually not needed. For small average power constraints, power control is imperative, while for large average powers, rate control is su±cient to achieve a large throughput. Our results reveal that power and rate adaptation can lead to signi¯cant perfor- mance improvements. Even a few bits of feedback can lead to large power savings and throughput gains, and as a result, channel state feedback can be readily implemented with minimal communication overhead in next generation protocols.

Description
PhD Thesis
Advisor
Degree
Type
Thesis
Keywords
user cooperation, relay channel, wireless communication, fading, feedback
Citation

"Exploiting Feedback in Cooperative Relay Networks," Ph.D. Thesis, 2005.

Has part(s)
Forms part of
Published Version
Rights
Link to license
Citable link to this page