Near Best Tree Approximation
dc.citation.bibtexName | article | en_US |
dc.citation.firstpage | 357 | en_US |
dc.citation.journalTitle | Advances in Computational Mathematics | en_US |
dc.citation.lastpage | 373 | en_US |
dc.citation.volumeNumber | 16 | en_US |
dc.contributor.author | Baraniuk, Richard G. | en_US |
dc.contributor.author | DeVore, Ronald A. | en_US |
dc.contributor.author | Kyriazis, George | en_US |
dc.contributor.author | Yu, Xiang Ming | en_US |
dc.contributor.org | Center for Multimedia Communications (http://cmc.rice.edu/) | en_US |
dc.contributor.org | Digital Signal Processing (http://dsp.rice.edu/) | en_US |
dc.date.accessioned | 2007-10-31T00:36:10Z | en_US |
dc.date.available | 2007-10-31T00:36:10Z | en_US |
dc.date.issued | 2002-01-15 | en_US |
dc.date.modified | 2006-06-05 | en_US |
dc.date.submitted | 2001-09-20 | en_US |
dc.description | Journal Paper | en_US |
dc.description.abstract | Tree approximation is a form of nonlinear wavelet approximation that appears naturally in applications such as image compression and entropy encoding. The distinction between tree approximation and the more familiar <i>n</i>-term wavelet approximation is that the wavelets appearing in teh appromant are required to align themselves in a certain connected tree structure. This makes their positions easy to encode. Previous work [CDGO], [CDDD] has established upper bounds for the error of tree approximation for certain (Besov) classes of functions. The present paper, in contrast, studies tree approximation of individual functions with the aim of characterizing those functions with a rpescribed approximation error. This accomplished in the case that the approximation error is measure in <i>L<sub>2</sub></i>, or in the case <i>p</i> not equal to 2, in the Besove spaces, which is close to (but not the same as) <i>L<sub>p</sub></i>. Our characterization of functions with a prescribed approximation order in these cases is given in terms of a certain maximal function applied to the wavelet coefficients. | en_US |
dc.description.sponsorship | Office of Naval Research | en_US |
dc.description.sponsorship | Army Research Office | en_US |
dc.description.sponsorship | National Science Foundation | en_US |
dc.identifier.citation | R. G. Baraniuk, R. A. DeVore, G. Kyriazis and X. M. Yu, "Near Best Tree Approximation," <i>Advances in Computational Mathematics,</i> vol. 16, 2002. | en_US |
dc.identifier.doi | http://dx.doi.org/10.1023/A:1014554317692 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/19711 | en_US |
dc.language.iso | eng | en_US |
dc.subject | compression | en_US |
dc.subject | n-term approximation | en_US |
dc.subject | encoding | en_US |
dc.subject | approximation classes | en_US |
dc.subject.keyword | compression | en_US |
dc.subject.keyword | n-term approximation | en_US |
dc.subject.keyword | encoding | en_US |
dc.subject.keyword | approximation classes | en_US |
dc.subject.other | Wavelet based Signal/Image Processing | en_US |
dc.title | Near Best Tree Approximation | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |