The Mechanical Characterization of Multi-Wall Carbon Nanotubes and Related Interfaces in Nanocomposites

Date
2011
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

This thesis primarily documents the development and application of a novel technique, which involves the usage of a silicon micro-mechanical device that operates in conjunction with a quantitative nanoindenter within an electron microscope, for the mechanical characterization of nanomaterials and interfaces in composites. The technique was used to conducted tensile tests on individual pristine, nitrogen doped and sidewall fluorinated multi-wall carbon nanotubes (MWNTs), which were found to exhibit varied load-bearing abilities and unique fracture modes. The technique was also used to perform single fiber pullout experiments to study the MWNT/polymer (epoxy) interface. Interfacial failure was found to occur in a brittle fashion, in a manner consistent with the predictions of continuum fracture mechanics models. Although an improvement in the interfacial adhesion was observed upon sidewall fluorination of the MWNT reinforcements, the results of the study essentially highlighted the weak nature of the forces that bind MWNTs to an epoxy matrix.

Description
Advisor
Degree
Doctor of Philosophy
Type
Thesis
Keywords
Mechanical engineering, Materials science
Citation

Ganesan, Yogeeswaran. "The Mechanical Characterization of Multi-Wall Carbon Nanotubes and Related Interfaces in Nanocomposites." (2011) Diss., Rice University. https://hdl.handle.net/1911/64436.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page