Shocks and jets from the laboratory environment to the astrophysical regime: Transforming AstroBEAR into an all purpose MHD simulation package

dc.contributor.advisorHartigan, Patrick M.en_US
dc.creatorCarver, Robert L.en_US
dc.date.accessioned2011-07-25T02:06:30Zen_US
dc.date.available2011-07-25T02:06:30Zen_US
dc.date.issued2010en_US
dc.description.abstractSupersonic jets and shocks play an important role in numerous astrophysical phenomena, ranging from stellar formation to active galactic nebulae (AGN). Laboratory astrophysics opens up new avenues for research into these jets and shocks, and computer simulations show great promise in linking laboratory and astronomical data. To date, the most effective codes for the laboratory environment are not readily available and lack magnetic fields, a key component in astrophysical jets and future magnetized laboratory experiments. Also no 3D simulation code has had its non-local thermodynamic equilibrium (LTE) cooling, essential for generating emission maps for comparison with astronomical observations, rigorously tested against an accepted baseline. The focus of this dissertation research was to improve an existing magneto-hydrodynamic code, AstroBEAR, to better model jets and shocks in laboratory and astrophysical environments, with the ultimate goal of developing a code that can link astronomical and laboratory data. The work outlined in this dissertation facilitates the connection between astronomical and laboratory data in two areas. First, we added a multiple material and non-ideal equation of state capability into AstroBEAR to handle the high density ionized plasmas that characterize laboratory astrophysics experiments and now have the first working 3D MHD code capable of simulating the laboratory environment. We used AstroBEAR in 2.5 D hydrodynamic mode to simulate a series of experiments carried out on the OMEGA laser, and compared the simulations with experimental data. Secondly, we improved AstroBEAR's handling of radiative cooling, specifically in the post-shock cooling zones prevalent in many astrophysical jets. The first ever validation tests of a 3D code against a fully non-LTE 1D radiative cooling atomic code show explicitly that AstroBEAR correctly models post-shock radiative cooling down to the resolution and micro-physics limits. We used this improved cooling to simulate the HH 110 jet and conclude from these simulations that any model of stellar jet formation must be able to produce processing and pulsing outflow. Overall the improvements of AstroBEAR's ability to handle jets and shocks in the laboratory and astrophysical environments position it to potentially link observational data with magnetized laboratory experiments.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.callnoTHESIS PHYS. 2010 CARVERen_US
dc.identifier.citationCarver, Robert L.. "Shocks and jets from the laboratory environment to the astrophysical regime: Transforming AstroBEAR into an all purpose MHD simulation package." (2010) Diss., Rice University. <a href="https://hdl.handle.net/1911/62119">https://hdl.handle.net/1911/62119</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/62119en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectAstronomyen_US
dc.subjectAstrophysicsen_US
dc.titleShocks and jets from the laboratory environment to the astrophysical regime: Transforming AstroBEAR into an all purpose MHD simulation packageen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentPhysicsen_US
thesis.degree.disciplineNatural Sciencesen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
3421160.PDF
Size:
2.77 MB
Format:
Adobe Portable Document Format